
RFD-ECNet: Extreme Underwater Image Compression
with Reference to Feature Dictionary

This supplementary material is organized as follows:

• Sec. A shows the effect of the cluster number K on our
compression performance.

• Sec. B provides some visual examples of underwater
priors of UWIs.

• Sec. C provides additional experimental results on un-
derwater videos.

• Sec. D further validates the comprehensiveness of our
dictionary.

• Sec. E provides the preliminary experimental results
of our framework expanded to Martian images.

• Sec. F provides the visualization of the intermediate
features in our RFD-ECNet.

• Sec. G provides the detailed network architecture of
our RFD-ECNet.

A. Effect of K on the compression performance

Considering the compactness of our underwater dictio-
nary, we adopt K-means to select K centrist features for the
dictionary. To verify the effect of K value on compression
performance, we conduct multiple experiments of different
K values, where K is set to {0, 400, 800, 1200, 1600}. The
BD-rate at each K value is shown in Table 5. Within the
certain range (K ≤ 1200), the compression performance
gets better as K increases. When K increases from 1200 to
1600, the improvement of BD-rate saving is small, indicat-
ing that the number of features in dictionary reaches satura-
tion. Since the model(K = 1200) performs almost on par
with model(K = 1600) but with a smaller dictionary, K is
set to 1200 in our RFD-ECNet.

Table 5: BD-rate (↓) at different K values.

K values 0 400 800 1200 1600

BD-rate ↓ 0% -16% -26% -46% -47%

B. Visual examples of underwater priors
In Fig. 9, we provide some visual examples of under-

water priors of different UWIs. As shown, different UWIs
present multifarious underwater styles of color shift and
distance-dependent clarity, which are caused by the unique
underwater imaging. In practice, these underwater styles
can be described by underwater physical priors extracted
from the underwater physical imaging model, i.e., the am-
bient light and transmission map.

UWIs Ambient light Transmission map

UWIs Ambient light Transmission map

Figure 9: Visual examples of UWIs and their underwater
physical priors of ambient light and transmission map.

C. Performance on underwater video
This section tests the performance of our RFD-ECNet

on underwater video sequences. Some visual comparisons
between RFD-ECNet with other SOTA image compression
methods on underwater videos are provided in https://
github.com/lilala0/RFD-ECNet. It can be clearly
seen that our RFD-ECNet also achieves better video com-
pression performance than other SOTA image compression
methods.

https://github.com/lilala0/RFD-ECNet
https://github.com/lilala0/RFD-ECNet
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Figure 10: Diversity comparison of different dictionary. D-
UGWI, D-EUVP and D-UIEB denote dictionaries built by
UGWI, EUVP and UIEB datasets.

(a) UGWI testset (b) EUVP testset (c) UIEB testset
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Figure 11: R-D performance of RFD-ECNet using different
dictionaries of D-UGWI, D-EUVP and D-UIEB.

D. Validation of dictionary comprehensiveness
As demonstrated in Sec 3.1, the diversity of our dictio-

nary has been verified by analyzing the spatial information
and colorfulness. This part further compares our dictio-
nary with two other dictionaries built from popular UWI
datasets including EUVP and UIEB, to validate the diver-
sity and efficiency of our dictionary. First, we compare the
diversity of three dictionary by colorfulness and spatial in-
formation. As shown in Fig. 10, our dictionary has wider
CF-SI distribution, indicating ours higher diversity. After
that, the performance of RFD-ECNet using different dictio-
naries is test on three UWI testsets shown in Fig. 11. It can
be clearly seen that our dictionary (D-UGWI) brings better
performance than two other dictionaries built from EUVP
and UIEB, indicating the efficiency of our dictionary.

E. Performance on Martian images [36]
As discussed in the main paper (Sec. 6), it is feasible

to expand our framework to other image domains because
the redundancy between images exists not only in UWIs
but also in other image domains where independent images
contain some common objects specific to the image domain.
To validate this hypothesis, we preliminarily conduct exper-
iments on Martian images [36] by adjusting our network,
and compare with the most advanced VVC, the widely used
BPG, and the martian image compression network VCIP’22
[36]. The comparison of R-D curves is shown in Fig. 12. As
shown, our method still achieves significantly better com-
pression performance than the other methods, illustrating
the efficiency, feasibility, and great potential of removing

redundancy between images in other image domains.

F. Visualization of the intermediate features
To illustrate how our RFD-ECNet works, we visualize

the intermediate features in our RFD-ECNet in Fig. 13. For
a clear view, we only depict the channel with the highest
entropy. Specifically, the 1-st and 2-nd columns, denoted as
(a) and (b), respectively are the input UWI and the features
of input. Columns (c) and (d) respectively are the reference
feature matched by out USN-FMM module and the variant
reference feature morphed by our RFVM. As shown, the
reference feature matched by our USN-FMM has certain
similarity with the input feature. Moreover, after being mor-
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Figure 12: R-D curves of different image compression
methods on Martian images.

(a) (b) (c) (d)

Figure 13: Visualization of the intermediate features in our
RFD-ECNet. (a) Input UWI. (b) Input feature of the in-
put UWI. (c) Reference feature matched by our USN-FMM
module. (d) Variant reference feature after our RFVM.



phed by our RFVM, the variant reference feature has higher
similarity with the input feature. These visualized features
show that our approach does match the reference features
with similarity to the input and further improve their sim-
ilarity, which directly results to a sparser latent feature of
removing redundancy between UWIs and fewer coding bits.

G. Detailed architecture of our RFD-ECNet
The overall framework of our RFD-ECNet has been pro-

vided in the main paper. Here, we provide the detailed
network architectures of our encoder, USN-FMM block,
RFVM block, and decoder, which are respectively pre-
sented in Table 6, Table 7, Table 8, Table 9.

Table 6: Detailed network structure of our encoder

Input UWI
layer 1 Conv [3× 192× 3× 3, s=2], GDN

layer 2-1 Conv [192× 192× 3× 3, s=2], GDN
layer 2-2 USN-FMM block
layer 2-3 RFVM block
layer 2-4 Residual operation
layer 3-1 Conv [192× 192× 3× 3, s=2], GDN
layer 3-2 USN-FMM block
layer 3-3 RFVM block
layer 3-4 Residual operation
layer 4-1 Conv [192× 192× 3× 3, s=2], GDN
layer 4-2 USN-FMM block
layer 4-3 RFVM block
layer 4-4 Residual operation
layer 5 Conv [192× 64× 3× 3, s=2]
Output Latent feature

Conv [input channels × output channels × kernel size, stride] indicates the
convolution layer. GDN is the normalization layer [12]

Table 7: Detailed network structure of our USN-FMM

Input Underwater priors (UPPs)
layer 1 Conv [3× 192× 3× 3, s=2], LRelu
layer 2 Conv [192× 192× 3× 3, s=2], LRelu
layer 3 Conv [192× 1× 3× 3, s=1]
Output UPPs feature

⇓
Input UPPs feature and our Dictionary (D)

layer 1 Linear flow in Eq. (4)
Output Normalized Dictionary (ND)

⇓
Input Input feature and ND

layer 1 Calculation of similarity by Eq. (5)
Output Matched reference feature

Table 8: Detailed network structure of our RFVM

Input Reference and input features
layer 1 Concatenation
layer 2 Conv [384× 192× 3× 3], GDN

layer 3-1 Conv [192× 192× 3× 3, dilation=1], GDN
layer 3-2 Conv [192× 192× 3× 3, dilation=2], GDN
layer 3-2 Conv [192× 192× 3× 3, dilation=3], GDN
layer 4 Concatenation
layer 5 Conv [576× 192× 3× 3], GDN
layer 6 Residual layer
layer 7 Conv [192× 4× 3× 3], Sigmoid
Output Dependency map (W )

⇓
Input Reference feature and W

layer 1-1 SVRConv [34]
layer 1-2 Conv [192× 192× 3× 3], GDN
layer 2-1 SVRConv
layer 2-2 Conv [192× 192× 3× 3], GDN
layer 3-1 SVRConv
layer 3-2 Conv [192× 192× 3× 3], GDN
layer 4-1 SVRConv
layer 4-2 Conv [192× 192× 3× 3], GDN
Output Variant reference feature

Table 9: Detailed network structure of our decoder

Input Latent feature, W , and indexes
layer 1-1 DeConv [64× 192× 3× 3, s=2], GDN
layer 1-2 RFVM
layer 1-3 Addition operation
layer 1-4 Residual blocks (192) × 2
layer 2-1 DeConv [192× 192× 3× 3, s=2], GDN
layer 2-2 RFVM
layer 2-3 Addition operation
layer 2-4 Residual blocks (192) × 2
layer 3-1 DeConv [192× 192× 3× 3, s=2], GDN
layer 3-2 RFVM
layer 3-3 Addition operation
layer 3-4 Residual blocks (192) × 2
layer 4 DeConv [192× 192× 3× 3, s=2], GDN

layer 4-2 Residual blocks (192) × 2
layer 5 DeConv [192× 3× 3× 3, s=2]
Output Decoded UWI

DeConv [input channels × output channels × kernel size, stride] indicates the
nn.ConvTranspose2d layer. Residual blocks (192) indicate the channel number
of the residual block is 192.


