
A. Network Architecture
We adopt the similar network structure as in [37] and

add the appearance code utilized in [43] for all the base-
line models and ours. Fig. 10 shows our detailed network
architecture.
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Figure 10. Network Architecture. The geometry network corre-
sponds to the SDF function f and the appearance network denotes
the appearance g in the main paper.

The geometry network is a 8-layer MLP with hidden di-
mension 256, and one skip connection at the fourth layer.
The input of this network is the point coordinate mapped
by a fixed positional encoding [20]. The output consists of
a 256 dimensional geometry feature and k SDF values for
each object. These SDF values can be transformed to se-
mantic logits using the function proposed in [37].

For the input of the appearance network, we adopt the
design in [43]. We optimize a per-frame appearance code
during the training and use this per-frame code to model the
varying light and blurry condition in each image for better
reconstruction. The appearance code is concatenated with
the viewing direction (also mapped by positional encoding),
the normal of the scene SDF, the geometry feature and the
point coordinate. The appearance network consists of two
layers with hidden dimension 256, and outputs a 3-channel
RGB color.

We use Softplus activation for the geometry network and
use ReLU activation for the appearance network, the RGB
color is obtained after passing the network’s output through
the Sigmoid activation.

B. Loss Functions Details
We elaborate all the losses and the weight choices used

in the optimization in this section.

RGB Reconstruction Loss: To learn the surface from im-
ages input, we need to minimize the difference between

ground-truth pixel color and the rendered color. We follow
the previous works [43, 37] here for the RGB reconstruction
loss:

LRGB =
∑
r

||Ĉ(r)−C(r)||1. (12)

Here Ĉ(r) is the rendered color from volume rendering and
C(r) denotes the ground truth.

Depth Consistency Loss: Monocular depth and normal
cues [43] can greatly benefit indoor scene reconstruction.
For the depth consistency, we minimize the difference be-
tween rendered depth D̂(r) and the depth estimation D̄(r)
from the Omnidata [5] model:

LD =
∑
r

||(wD̂(r) + q)− D̄(r)||2, (13)

where w and q are the scale and shift values to match the
different scales. We solve w and q with a least-squares cri-
terion, which has the closed-form solution. Please refer to
the supplementary of [43] for a detailed computation pro-
cess.

Normal Consistency Loss: Similar to the depth consis-
tency loss, we also use the normal cues N̄ from Omnidata
model to supervise the rendered normal. Specifically, the
normal consistency loss consists of L1 and the angular
losses:

LN =
∑
r

||N̂(r)− N̄(r)||1 + ||1− N̂(r)TN̄(r)||1. (14)

Here the volume-rendered normal and normal estimation
will be transformed into the same coordinate system by the
camera pose.

Semantic Loss: We minimize the semantic loss between
volume-rendered semantic logits of each pixel and the
ground-truth pixel semantic class. Here the semantic ob-
jective is implemented as a cross-entropy loss:

LS =
∑
r

k∑
j=1

−ĥj(r) log hj(r). (15)

The ĥj(r) is the ground-truth semantic probability for j-th
object, which is 1 or 0.

Eikonal Loss: Following common practice, we also add
an Eikonal term on the sampled points to regularize SDF
values in 3D space:

LE =

n∑
i

(||∇ min
1≤j≤k

sj(pi)||2 − 1) (16)

Here the eikonal loss is applied to the gradient of the scene
SDF, which is the minimum of all the SDFs.



C. Evaluation Metrics
To evaluate the reconstruction performance, we use the

Chamfer Distance and F-score with a threshold of 5cm in
this paper. In detail, Chamfer Distance comes from Accu-
racy and Completeness, and F-score is derived from Preci-
sion and Recall. For point clouds P and P ∗ sampled from
the predicted and the ground-truth mesh, we show the de-
tailed computation procedure here:

Accuracy = mean
p∈P

(
min

p∗∈P∗
||p− p∗||1

)
,

Completeness = mean
p∗∈P∗

(
min
p∈P

||p− p∗||1
)
,

Chamfer-L1 =
Accuracy+ Completeness

2
.

(17)

Precision = mean
p∈P

(
min

p∗∈P∗
||p− p∗||1 < 0.05

)
,

Recall = mean
p∗∈P∗

(
min
p∈P

||p− p∗||1 < 0.05

)
,

F-score =
2× Precision× Recall

Precision+ Recall
.

(18)

D. Synthetic Dataset Construction
In order to quantitatively evaluate the object-level recon-

struction performance in the object-compositional indoor
scenes, we create a synthetic dataset with object ground-
truth geometry. In this part we elaborate on how to con-
struct the Synthetic Dataset used in this paper. Despite that
the dataset is not a major contribution of this paper, we will
release it for future comparisons.

We use Blender [2] and an add-on BlenderNeRF [29] to
construct the scenes (assign different object locations, light-
ing conditions and camera trajectories) and render the RGB
images together with the camera poses. The Blender’s cam-
era coordinate system is different from the coordinate sys-
tem in ScanNet, which requires an extra 180◦ rotation along
with the x-axis on the recorded extrinsic matrix.

To render semantic masks, we switch each object’s sur-
face texture to a certain value and render again with the
identical camera trajectories. We create 5 scenes and three
of them contain 5 objects while other two contain 10 ob-
jects (background not included). For each scene we render
200 images and use the Omnidata [5] model to obtain the
corresponding monocular depth and normal cues.

E. Additional Ablation Experiments
E.1. Parameter Ablation Study

In this part we provide the ablation experiment for the ϵ
in proposed object point-SDF loss Lop. Particularly, ϵ is a
non-negative number as a threshold, that the objects’ SDFs

outside of the background should be larger than this value.
We provide an ablation study on different ϵ values on syn-
thetic scenes in Tab. 5.

ϵ = 0 ϵ = 0.05 ϵ = 0.1 ϵ = 0.2

Chamfer-L1 ↓ 0.187 0.033 0.034 0.036
F-Score ↑ 0.755 0.817 0.812 0.793

Table 5. Ablation Study on ϵ. Metrics are evaluated and averaged
on all the objects of all the synthetic scenes.

Intuitively, ϵ should be larger than 0 because the points
behind the background are outside of each object’s surface,
i.e. the object SDFs of these points should be positive. Em-
pirically we find setting ϵ = 0.05 yields slightly better per-
formance than 0.1 and 0.2. When setting ϵ = 0, the object
reconstruction performance drops significantly. We found
the reason is that, when ϵ is 0, the SDFs of the sampled
points can not all be effectively optimized to positive, yield-
ing some negative SDF vaules, which results in the flaws in
the empty space.

E.2. Backbone Ablation Study

When utilizing SDF as the surface geometry representa-
tion, there are typically two choices to combine SDF and
volume rendering as proposed in[41, 36]. In the main paper
we adopt the scheme proposed in NeuS [36] for RICO. We
provide the comparison of reconstruction results on Scan-
Net (evaluated on whole scene) and Synthetic scenes (eval-
uated on each object), and report the results in Tab. 6. Since
[36] explicitly models the angle difference of ray direction
and the surface normal, it can have slightly better perfor-
mance by better reconstructing the visible surface.

ScanNet Synthetic Object
Chamfer-L1 ↓ F-score ↑ Chamfer-L1 ↓ F-score ↑

RICO-VolSDF 0.090 0.592 0.042 0.751
RICO 0.088 0.624 0.033 0.817

Table 6. Ablation Study on Backbone. We show the recon-
struction comparison of our methods using the volume rendering
scheme proposed in [41] (RICO-VolSDF) and [36] (RICO, which
represents the method proposed in main paper).

F. Construct the ObjSDF*-C Baseline
As stated in the main paper, we construct an improved

baseline over ObjSDF*, named ObjSDF*-C, to provide bet-
ter visualization and quantitative results. The main proce-
dure is to use the reconstructed background surface to elim-
inate the parts of object reconstruction that are outside of
the background range. The construction procedure is just
a post-process method on the object meshes and do not



change the original nature of the ObjSDF* that only the vis-
ible surfaces are reconstructed.

For Synthetic scenes, since we set the background as a
cubic room with a range of [−2m, 2m] in three dimensions,
i.e. the background is an axis-aligned box, we can directly
use this range to segment the object reconstruction meshes.
For ScanNet scenes, we use the ground-truth scene meshes
to get a coarse range and manually finetune the range of
each scene (ObjSDF*-C on ScanNet is only used for visu-
alization, not for quantitative evaluation), then segment the
object meshes based on the finetuned range.

G. Object Manipulation Implementation
To manipulate the reconstructed objects, a straightfor-

ward way is to directly manipulate the meshes. In the main
paper we show the volume rendered normal maps and se-
mantic masks before and after manipulation. In Fig. 11
we show how to implement the volume rendering in cur-
rent framework. The core is to query the SDF value of ma-
nipulated object at the destined point, and combine it with
other objects’ SDF values. Notably, the color is decided by
not only the coordinate but also the geometry feature (il-
lustrated in Fig. 10). However, now the original point for
other object SDFs and the manipulated point for the desired
object SDF will result in two geometry feature vectors. In
contrast to use minimum value to get the scene SDF from
all SDFs, it’s hard to decide how to fuse these two geometry
features together in current framework. Now we only show
the volume rendering results that are decided by SDF val-
ues, i.e. geometry, like the normal map and semantic mask.
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Figure 11. Object Manipulation Implementation. In this figure
we show when moving the object j with [δx, δy, δz] in each direc-
tion, how to implement volume rendering in the current network.

H. More Discussions

Smooth surface: It can be seen from the figures in
the paper that surface from RICO is smoother in a way.
The smooth effect actually comes from different rendering
schemes proposed in VolSDF [41] and NeuS [36]. Empir-
ically we notice that comparing to RICO-VolSDF, RICO-

Figure 12. Visualizations of: (left) normal map of occluded cor-
ner in background, (right) reconstruction results on Replica.

NeuS (default) has better quantitative results but can also be
somehow oversmooth. It is an interesting future direction to
investigate the effects of different reconstruction backbones
in learning the compositional geometry.

Background smoothness regularization: Fig. 6 of our
paper presents sharp background corners with occlusions.
Here we provide a better visualization in Fig. 12 (left).
There are mainly two scenarios for smoothness loss on oc-
cluded sharp geometry: 1) The sharp geometry is observ-
able in some images. The reconstruction loss in these views
will be dominant in optimization because the smoothness
loss is of small weight and computed only once in several
iterations, thus the sharp geometry can be reconstructed cor-
rectly; 2) The sharp geometry is completed occluded in all
the views as shown in Fig. 12. By regularizing the depth
and normal, we observe that the visible regions of wall and
ground are smoothly extended, yielding a corner that is not
perfectly perpendicular but without artifacts.

I. Qualitative Results on Individual Scenes
In Fig. 13 and Fig. 14, we provide the RICO’s object-

compositional reconstruction on ScanNet scenes and Syn-
thetic scenes (with the object ground-truth) respectively.
Here we also provide a visualization of RICO on one of
the Replica scenes in Fig. 12 (right).

J. Limitations
In this work, we assume the indoor scene as convex

room, that the ray shot inside of the room penetrates the
background surface once. However when processing the
more complex indoor scenes where one ray can go through
multiple rooms, our object regularizations may require ex-
tra conditions to decide which points to be applied to. Addi-
tionally, the object-scene relation prior regularized the com-
pleteness from only the geometry perspective. The frame-
work can be extended to utilizing more complex category-
level prior for better reconstruction.
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Figure 13. Qualitative Visulization on ScanNet. We show the object-compositional reconstruction results from RICO on seven Scan-
Net [3] scenes.



Figure 14. Qualitative Visualization on Synthetic Scenes. In the left column we show the ground-truth object geometry of the five
synthetic scenes, in the right column we provide the qualitative object-compositional reconstruction results of our proposed RICO.


