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This supplementary material contains additional infor-
mation that could not be included in the main manuscript
due to space limitations. We will begin by providing more
detailed information about the dataset. Following that, we
will briefly discuss the pose optimization details in our ap-
proach. Then we will then present additional visualization
results from our qualitative experiments. Finally, we will
discuss the broader impacts and limitations of our dataset.

A. More details on RenderIH

RenderIH is composed of 1 million synthetic images by
varying the pose, camera view, and environment (texture,
lighting, and background). By collecting annotations from
IH2.6M, we removed samples of similar poses resulting in
3680 distinctive poses. For each distinctive pose, we aug-
ment I = 30 poses. After augmenting and optimization, we
filter out those IH poses that still have notable penetration or
exceed joint limits, the remaining data accounts for 93% of
the total, and we produce approximately 100K natural and
non-interpenetration IH poses. Then we apply 10 camera
viewpoints to each pose and produce 1M synthetic images
in total. For each image, we randomly pick from a collec-
tion of 300 HDR images to illuminate the hand and provide
the background together with a hand texture map. The ren-
dering process took more than 200 hours using 4 NVIDIA
A100 GPUs. As for the corresponding annotation, we pro-
vide pose and shape parameters, 3D joint coordinates, 2D
joint coordinates, and camera intrinsic and extrinsic param-
eters. It is worth noting that the synthetic data labels can
be freely extended based on the user’s preferences, such as
generating hand parts segmentation masks. The automati-
cally generated annotations are free of noise and are more
flexible than the traditional labels of the real dataset. Some
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Figure 1. Visual comparison of penetration loss between ours and
multi-person penetration loss [1]. The penetration position of each
hand can be obtained by utilizing the penetration loss. The green
color and red color are used to denote where the right hand and
left hand are penetrated respectively.

rendering examples to illustrate our photo-realistic effect
are provided in the video demo.

B. Pose optimization details

Penetration loss comparison. Hands are highly articu-
lated and have a curved and concave shape as a whole ob-
ject. It makes the original multi-person penetration loss [1]
hard to detect the correct penetrated positions. However, by
dividing the hand into 16 almost convex parts, we can per-
form SDF on each part and calculate the penetration, which
can lead to more accurate penetration detection results. The
visual difference between our algorithm and multi-person
penetration loss [1] can be seen from Figure 1.

Optimization details. As shown in Figure 2 a), The
anchor pairs are built between the closest anchors on both
hands, making the IH has more contact. As shown in Fig-
ure 2 b), to avoid abnormal anchors pairs, the pair can only
be established when n̄ai · n̄aj < 0, in which n̄a is the mesh
face normal vector of the anchor. However, the IH attrac-
tion might cause a negative influence when the parts are in
serious overlaps, as shown in Figure 2 c), there are conflicts



Figure 2. Building anchor pairs between IH. a) Nearest anchors are
connected as the pairs, they tend to make more contacts between
both hands. b) Using face normals to avoid abnormal pairs. c) The
proper pairs are hard to build when the hand parts are in serious
overlaps.

Figure 3. Results for different components of optimization. a) The
poses augmented from the IH2.6M. b) After being optimized by
the proposed method, the poses become valid and natural. c) Using
vertices instead of anchors to make IH attraction has no significant
differences. d) Poses optimized without discriminator are valid but
not natural. e) Poses optimized without IH attraction have fewer
contacts.

between pairs, making the mesh hard to separate, the simple
way to solve this problem is separating the hands at first so
that we could have better anchor pairs.

argmin
ψr,ψl

(w1

Ar∑
i=1

Al∑
j=1

LAij + w2La + w3Ladv + w4Lp), (1)

In our implementation, we optimize the loss function in
Equation 1 which is defined in the main paper in 215 it-
erations, we assign a larger weight w4 for Lp and a smaller

weight w1 for LA at the beginning to separate the hands, w1

will increase while w4 decrease during the optimization un-
til 165th iteration. The anchor pairs will be rebuilt every 40
iterations to adapt to dynamically changing IH. The learning
rate is set to 0.01 and will reduce after 20 no-loss-decaying
iterations. Adam solver is utilized for optimization.

C. More visualization results

C.1. Results for different optimization components

Visualization of the effect of different components.
We define multiple optimization loss functions to get valid
and natural IH poses. As shown in Figure 3, the “Aug-
mented Pose” is randomly augmented from the raw poses
in IH2.6M, the joint poses are restricted according to Ta-
ble 2 in the main paper. After being optimized by the full
constraints, we get natural and non-interpenetration poses.
Comparing Figure 3(b) and Figure 3(c), we can see that
adopting anchors to make IH attraction has no significant
differences from employing full vertices while reducing the
time complexity. Furthermore, as demonstrated in Fig-
ure 3(d), the natural discriminator D could make the IH
more natural, the natural poses are defined in the main
paper, they not only conform to the anatomy but also fre-
quently occur in daily life. Additionally, as shown in Fig-
ure 3(e), IH attraction enhances hand contact, which is hard
to annotate in reality due to inter-occlusion.

Metrics PAMPJPE/MPJPE/SMPJPE/MRRPE↓
Training set\Test set Tzionas

IH2.6M 6.76/16.78/13.97/14.63
IH2.6M+RenderIH 5.79/15.78/12.16/14.15

Table 1. The comparison of training with or without our dataset on
IH2.6M dataset. Wrist joint is used as root.

C.2. Qualitative results comparison

Comparison with IntagHand. To better demonstrate
the superiority of our data and method, we compare
our result with the existing state-of-the-art method Intag-
Hand [2] (Their models is also trained on the combina-
tion of IH2.6M [3] and synthetic images). Some qualitative
comparisons with IntagHand are shown in Figure 6. By di-
rectly projecting 3D hand mesh onto the image, we can see
our result is closer to the pose in the raw image. Addition-
ally, the results of these images from various views are also
presented (see Figure 4). In the first row of Figure 4, our
result can be even better than the ground truth, where the
middle, ring, and little fingers of the right hand are curved.
To further compare our generalization ability, we compare
with IntagHand on in-the-wild images (see Figure 5). The
results show that our method can clearly achieve less inter-



Figure 4. Qualitative comparison with our method and IntagHand [2] on InterHand2.6M under a variety of viewpoints and different levels
of inter-hand occlusion. Red circles are used to highlight the positions where our methods can generate better results. In the first row, our
result can be even better than the ground truth, where the middle, ring, and little fingers of the right hand are curved.

Figure 5. Qualitative comparison of the interacting hand pose estimation with our method and IntagHand [2] on in-the-wild images. The
first three columns display images from the Tzionas dataset [4], while the last three columns showcase images from the RGB2Hands
dataset [5]. Red circles are used to highlight the positions where our methods can generate better results. From the visualization results,
we can clearly see that our model can generalize better for in-the-wild images.

penetration of two hands and more accurate finger interac-
tions.

Impact of synthetic data. When only RenderIH is

used for training, the performance is worse than when only
IH2.6M is used, in part because the background variation
in Tzionas is limited. The trend can be seen in the qualita-



Figure 6. Qualitative comparison of the interacting hand pose es-
timation with our method and IntagHand [2] on InterHand2.6M.
Red circles are used to highlight the positions where our methods
can generate better results.

IH2.6M Only RenderIH Only RenderIH+IH2.6MRaw image

Figure 7. Qualitative comparison of our models trained on differ-
ent training sets which test on in-the-wild images.

tive result in Figure 7. However, as a synthetic dataset, the
function of our dataset is to largely reduce the number of
real data needed for training instead of replacing real data
entirely.

C.3. Quantitive results with wrist joint as root joint

For convenient future comparison, we report our model’s
performance using wrist joint as root joint following com-
mon practice. As shown in Table 1, the model trained on
a mixture of RenderIH and IH2.6M demonstrates consis-
tent improvement across all metrics compared to training
on IH2.6M alone.

D. Broader impacts and limitations
Broader impacts. In this paper, we introduce a syn-

thetic 3D hand dataset, RenderIH, with accurate and diverse
poses. Since there are no large-scale synthetic interacting
hand datasets, RenderIH will be impactful for the commu-
nity, due to its unprecedented scale, diversity, and rendering
quality. Moreover, the dataset not only can be used to im-
prove the generalization ability in real scenes but also can
be used for domain adaptation.

Limitations. The hyperparameters of pose optimization
are chosen on the basis of experimental results, such as fac-
tor k and s in Interhand attraction and weights in the final
optimization loss. In the future, we may set them as learn-
able parameters that can be automatically learned from data.
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