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1. More Experimental Details and Results
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Table 2. Results without distillation.

Model Params (M) MACs (G) Latency (ms) Epochs  Top-1 (%)
MobileNetV2 1.0 35 030 0.9 300 718
Training hyper-parameters. We provide the detailed train- EfficientFormorV2:S M 010 0 S )
: ) ] TdgeViT-XS 6.7 110 36 300 775
ing hyper-parameters for the ImageNet-1K [2] classification EfficientFormerV2-S1 6.1 0.65 L1 300 77.9
. . . . . . . . MobileFormer-508M 14.0 0.51 6.6 450 79.3
task in Tab. 1, which is a similar recipe following DeiT [8], Poollommers]2 120 20 s 300 72
EfficientFormerV2-S2 12.6 1.25 1.6 300 80.4

LeViT [3], and EfficientFormer [5] for fair comparisons.

Table 1. Training hyper-parameters for ImageNet-1K classification Table 3. Analysis of explicit position encoding (Attention Bias).

task. The drop path rate is for the [SO, S1, S2, L] model series.

We use EfficientFormerV2-S1 for the experiments.

Hyperparameters Config Params (M) Epoch Attention Bias  Top-1 (%)
optimizer AdamW 6.10 300 Y 79.0
learning rate ~~ 0.001x(BS/1024) 6.08 300 N 78.8
LR schedule cosine 6.10 450 Y 79.7
warmup epochs 5 6.08 450 N 79.5
training epochs 300
weight decay 0.025
augmentation RandAug(9, 0.5) Attention Bias is employed to serve as explicit position
color jitter 0.4 encoding. On the downside, attention bias is resolution
gradient clip 0.01 sensitive, making the model fragile when migrating to down-
random erase 0.25 stream tasks. By deleting attention bias, we observe 0.2%
label smooth 0.1 drop in accuracy for both 300 and 450 training epochs (At-
mixup 0.8 tention Bias as Y vs. N in Tab. 3), showing that Efficient-
cutmix 1.0 FormerV?2 can still preserve a reasonable accuracy without
drop path [0,0,0.02,0.1] explicit position encoding.

Results without distillation. We provide our models trained
without distillation in Table. 2. Compared with representa-
tive works trained without distillation, e.g., MobileNetV2 [7],
MobileFormer [ 1] (trained with longer epochs), EdgeViT [6],
and PoolFormer [Y], our models still achieve better latency-
accuracy trade-offs.

Analysis on attention bias.

2. More Ablation Analysis of Search Algorithm

Importance of Expansion Ratios. We first discuss the
necessity to search for expansion ratios on top of width. As
in Tab. 4, we show that, by adjusting width to maintain an
identical budget, i.e., the same number of parameters for
cach model, varying the expansion ratio incurs considerable
difference in performance. As a result, we can not obtain



Pareto optimality by solely searching for width while setting
a fixed expansion ratio.

Table 4. Ablation analysis on expansion ratios. Varying expan-
sion ratios lead to different results even with the same number of
parameters. Latency is obtained on iPhone 12.

Expansion ratio Params (M) Latency (ms) Top-1 (%)
4 134 1.6 81.8
2 134 1.6 81.6
1 13.4 1.6 81.1

Analysis of Searching the Expansion Ratios. We verify
the performance of different search algorithms in Tab. 5.
We obtain the baseline result using the search pipeline in
EfficientFormer [5] to search only for the depth and width.
With a budget of 7M parameters, we obtain a subnetwork
with 79.2% top-1 accuracy on ImageNet-1K. Then, we apply
a simple magnitude-based pruning to determine expansion
ratios in a fine-grained manner. Unfortunately, the perfor-
mance is not improved. Though searching for expansion
ratios is important (Tab. 4), it is non-trivial to achieve Pareto
optimality with simple heuristics. Finally, we apply our
fine-grained search method and obtain a subnetwork with
79.4% top-1 accuracy, demonstrating the effectiveness of
our approach.

Table 5. Ablation on search methods for depth, width, and expan-
sion ratios. EfficientFormer [5] merely searches for depth and
width. On top of EfficientFormer [5], we perform network pruning
to decide channel numbers for stage width and expansion ratios.
Finally, we show the results of our search algorithm for jointly
optimizing depth, width, and expansions.

Method Params (M) Latency (ms) Top-1 (%)
From EfficientFormer [5] 7.0 1.15 79.2
From EfficientFormer [5] + Pruning 7.0 1.15 79.2
Ours 7.0 1.15 79.4

Analysis of Different v, c,,, and o in Eqn. 1. Here,
we provide the results for analyzing how different values of
Qatency and i, can impact the search results in Tab. 6.
Our search algorithm is stable to different « settings. In-
creasing the weight of size (as;,e) leads to slower models.
Our current setting (Qg¢ency as 1.0 and g, as 0.5) is deter-
mined by aligning with recent works, e.g., EdgeViT, UniNet,
etc, to make fair comparisons.

Table 6. Analysis of the ajatency and aus;ze in search algorithm.

Qlatency Osize Params (M) Latency Top-1(%)
1.0 1.0 35 1.1 ms 77.0
0.5 1.0 3.5 1.3 ms 77.3
1.0 0.5 3.5 0.9 ms 75.7

Visualization of Search Results. In Fig. I, we visualize
the performance of the searched subnetworks, including
the networks obtained by using the search algorithm from

Table 7. Generalization of design choices on detection and instance
segmentation. Configuration matches Tab.1 in paper. For instance,
Sec.3.1 refers to falling back to DWConv mixer instead of FFN.
Without our proposed stride attention (Sec.3.4), the model encoun-
ters memory issues and cannot run on mobile. Note that Sec.3.2
is not included as 5 stage network is not a common practice in
detection tasks.

Configuration Latency (ms) AP™®  Ap™*sF
EfficientFormerV2-S2 187.9 33.5 31.2
Sec.3.1 181.1 31.6 29.5
Sec.3.3 187.2 334 31.2
Sec.3.4 Failed 33.9 31.6
Sec.3.5 187.7 32.7 30.6

EfficinetFormer[5] and networks found by our fine-grained
joint search. We employ MES as an efficiency measurement
and plot in logarithmic scale. The results demonstrate the
advantageous performance of our proposed search method.
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Figure 1. Comparisons between our search method (Ours) and the
search pipeline from EfficientFormer [5] (denoted as V1-scale),
starting from the same supernet trained on ImageNet-1K.

Design Choice Ablation. We ablate our network design
choices on detection/instance segmentation task, and prove
that the conclusions from ImageNet-1K classification task
can transfer. We train EfficientFormerV2-S2 on MS-COCO
dataset from scratch for 12 epochs without ImageNet pre-
training. The results are included in the Tab. 7. For instance,
Sec.3.1 refers to falling back to DWConv mixer instead of
FFEN. Our design holds clear advantages. In addition, without
our proposed stride attention (Sec.3.4), the model encounters
memory issues and can not run on mobile. Note that Sec.3.2
is not included as 5 stage network is not a common practice
in detection tasks.

More random models and the cost analysis of searching
via supernet vs. random. We sample more random models
(10) with a more extensive latency range to compare against
our scarched models. As seen in Fig. 2, searching mod-
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Figure 2. Comparisons with more random sampled models. We
take 0.1ms as the significant digit based on mobile measurement
precision.
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Figure 3. Subnet evaluation vs. training from scratch. We report
our searched models (red) along with random ones (blue).

els by our approach (red line) gets better performance than
random search (blue dots). Our supernet training takes 37
GPU days (A100), which is 4.6x the training time of the L
model (8 GPU days). However, assuming at least 10 ran-
dom subnets are needed to search each candidate, the cost
of random search for L-level model itself accumulates to
80 GPU days (2x longer than supernet). Also, the cost of
random search further scales up for multiple networks (four
in our work). Thus, our search method is more efficient than
random search.

Accuracy of subnets from supernet and their correlation
to final accuracy. In the Figure. 3, we show the accuracy of
multiple subnets obtained from the supernet and their cor-
relation to final accuracy (training from scratch). We refer
EagleEye [4] for comparison. Through effectively-trained su-
pernet, we obtain higher subnet evaluation accuracy (> 40%,
v.s. < 10% in EagleEye), as well as better correlations to
final accuracy (2 = 0.91, v.s 0.63 in EagleEye) measured by

Pearson correlation coefficient.

3. Network Configurations

The detailed network architectures for EfficientFormerV2-
S0, S1, S2, and L arc provided in Tab. 8. We report the stage
resolution, width, depth, and per-block expansion ratios.
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Table 8. Architecture details of EfficientFormerV2.

. EfficientFormerV2
Stage | Resolution | Type Config 0 ST S T
H, W Cony Kernel, Stride 3x3,2 3x3,2 3x3,2 3%x3,2
stem 202 N,C ’ 1, 16 1,16 1,16 1,20
H W Conv Kernel, Stride 3x3,2 3x3,2 3x3,2 3x3,2
47 4 N,C 1,32 1,32 1,32 1,40
| % “ % — N,C 2,32 3,32 4,32 5,40
E [4,4] [4,4,4] [4,4,4,4] [4,4,4,4,4]
2 H, W — N, C 2,48 3,48 4,64 5,80
8 8 E [4,4] [4,4,4] [4,4,4,4] [4,4,4,4,4]
— N,C 6,96 9,120 12,144 15,192
3 16 % 1—V‘é E [4,3,3,3,4,4] | [4(x5),3(x4)] | [4(x6),3(x6)] | [4(x8),3(x7)]
MHSA N 2 2 4 6
o — N, C 4,176 6,224 8,288 10,384
4 35 X 35 E [4,3,3,4] [4,4,3,3,4,4] | [4(x4),3(x4)] | [4(x6),3(x4)]
MHSA N 2 2 4 6




