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We provide additional information and experimental re-
sults in the supplemental material. In Section A, we present
the analysis of the error rate distributions on the action
chains predicted by different works. It illustrates the be-
haviour of error accumulation with concrete experimental
evidence. Then, we detail the network architecture and loss
design at T = 3 in Section B. We further demonstrate the
robustness and delicacy of our decoupling approach through
experiments in Section C.

A. Comparisons of Error Rate Distributions
Error rate analysis is crucial because it reveals how er-

rors are accumulated along action chains. In this section,
we compare the error rate distributions along the chains at
T = 4 predicted by different works, including PlaTe[1],
P3IV[2], and our Skip-Plan, as illustrated in Figure S1.
Here, the error rate at a timestep t is defined as the num-
ber of wrong action predictions at the timestep t divided by
the total number of actions at this position, and the relative
node position is calculated by (t − 1)/(T − 1). The error
rate distribution is the distribution of the error rates at all
timesteps (e.g., the relative node position ranges from 0 to
1). We can summarize two important points from Figure
S1. First, we spot the error rate distribution of PlaTe[1] is
significantly different from the ones of P3IV[2] and Skip-
Plan. The error rate distribution of PlaTe[1] keeps rising
until the last action of the chain, but the distributions of
P3IV[2] and our Skip-Plan are increasing and then decreas-
ing, reaching a maximum at the middle of the chains. This
discrepancy is caused by the network type. PlaTe[1] is an
autoregressive network and generates actions one by one.
Thus, it accumulates errors continuously from left to right.

* indicates the corresponding author.

Figure S1. Error rate distributions along the chains predicted by
PlaTe[1], P3IV[2], and Skip-Plan at T = 4.

In contrast to PlaTe[1], P3IV[2] and our Skip-Plan utilize
non-autoregressive transformer decoders to generate whole
action sequences in batches. This type of network accumu-
lates the error from two ends of the chain, and the error rate
peaks at the middle of the chain. Overall, the average er-
ror rate of the non-autoregressive models is lower than the
one of the autoregressive models, because the chain length
for the error accumulation in the non-autoregressive mod-
els is reduced to half compared to the length of the autore-
gressive models. Second, benefiting from the shared MLP
network in the Visual Input Module, the error rates of the
first and last actions in our Skip-Plan are the lowest among
these works. The decoupling approach without state super-
vision in Skip-Plan further reduces the compounding error
at intermediate actions. Both of them drive our Skip-Plan
network to achieve the lowest error rates at all timesteps.
Consequently, our Skip-Plan achieves state-of-the-art per-
formance on the CrossTask and COIN benchmarks in pro-
cedure planning.



Figure S2. Our Skip-Plan architecture at T=3. The network architecture at T = 3 is slightly different from Figure 2. It is composed
of the Visual Input Module, the Decoder Module, and the Supervision Module, where the Decoder Module and the Supervision Module
correspond to the Sub-chain Decoder Module and the Sub-chain Accumulation Module in Figure 2. There is only one decoder in the
Decoder Module, which directly outputs the complete chain {a1, a2, a3}. Without generating sub-chains, there is only one complete chain
supervision in the Supervision Module.

B. Network Architecture and Loss for T=3
Our Skip-Plan architecture at T = 3 is slightly different

from Figure 2. For T = 3, the network architecture is com-
posed of the Visual Input Module, the Decoder Module, and
the Supervision Module, where the Decoder Module and
the Supervision Module just correspond to the Sub-chain
Decoder Module and the Sub-chain Accumulation Module
in Figure 2 respectively. As illustrated in Figure S2, there is
only one decoder in the Decoder Module, which directly
outputs the complete chain {a1, a2, a3}. Without gener-
ating sub-chains, no individual sub-chain supervision and
sub-chain accumulator are present in the Supervision Mod-
ule. Therefore, we only have the complete chain supervi-
sion, and the loss for T = 3 is defined as:

L = FL(a1:T ). (S1)

C. Reliability of Standalone Sub-chains
To prove our decoupling approach can extract reliable

sub-chains at any condition, we further compare the relia-
bility of standalone sub-chains with the reliability of these
sub-chains contained within the complete chain at T = 4/6.
As illustrated in Table S1, the metric results of ‘Short’ are
consistently better than the ‘Long’ results for all sub-chains
at any length. Consequently, our decoupling method can
robustly better the prediction results for all long T .

To demonstrate the delicacy of our decoupling method,
we try a different decoupling strategy and show how it
fails. For example, we choose the sub-chain {a1, a2, a3}
at T = 4/5/6. This sub-chain has the same length as our
decoupled sub-chains, but is composed of one reliable ini-
tial action and two unreliable intermediate actions, where

Table S1. Reliability of standalone sub-chains vs sub-chains con-
tained within original long chains at T = 4/6. It validates our
decoupling approach can robustly improve the metric results for
all long T .

Horizon Sub-chain Loss Type SR mAcc mIoU

T = 4
{a1, a2, a4}

Long 15.77 57.58 71.05
Short 17.13 59.16 72.18

{a1, a3, a4}
Long 15.39 57.34 72.29
Short 16.88 58.93 73.06

T = 6

{a1, a2, a6}
Long 20.87 55.73 69.71
Short 23.34 58.85 71.87

{a1, a3, a6}
Long 15.83 52.76 67.38
Short 19.81 56.57 70.55

{a1, a4, a6}
Long 18.75 54.89 69.10
Short 18.95 55.21 70.06

{a1, a5, a6}
Long 21.07 55.96 70.82
Short 22.48 57.81 72.12

the actions are all adjacent. In this way, we find the relia-
bility of standalone sub-chains is lower than the one of the
sub-chains contained within the original long chains at all
long T , illustrated in Table S2. Thus, this type of decou-
pling approach cannot improve prediction accuracy. The
failure of this decoupling method is caused by losing the re-
liable constraint of the last action. This simple experiment
demonstrates our decoupling design is very delicate, robust,
and effective.



Table S2. To demonstrate the delicacy of our decoupling method,
we try a different decoupling approach and show how it fails. We
compare the reliability of the standalone sub-chain {a1, a2, a3} vs
the sub-chain {a1, a2, a3} contained within the original long chain
at T = 4/5/6. Without the reliable constraint of the last action,
the metric results of ’Short’ are worse than the ’Long’ results at all
long T.

Horizon Loss Type SR mAcc mIoU

T = 4
Long 16.65 49.30 67.16
Short 15.91 48.20 65.93

T = 5
Long 13.10 45.67 64.46
Short 12.82 45.13 62.78

T = 6
Long 11.64 44.32 62.29
Short 11.44 43.30 61.50
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