
StegaNeRF: Embedding Invisible Information within Neural Radiance Fields
(Supplementary Material)

Chenxin Li1*, Brandon Y. Feng2∗, Zhiwen Fan3∗, Panwang Pan4, Zhangyang Wang3

1Chinese University of Hong Kong, 2University of Maryland,
3University of Texas at Austin, 4ByteDance

The video included in the supplementary material is
recommended to understand the problem background,
motivation, and main results. The code and trained
models will be released public.

The following contents are provided in the supplement:

• More experimental details (Sec. 4.1 in main paper).

• More implementation details on 2D steganography
methods (Fig. 3, Tab. 1, and Sec. 4.2 in main paper).

• Details of network architecture of StegaNeRF.

• More results, visualization, and explanation about our
experiments. (Sec. 4 in the main paper).

A. Detailed Experimental Setup

In both the first and second stage of StegaNeRF train-
ing, we use mean squared errors to compute the reconstruc-
tion loss for NeRF rendering and hidden recovery. Sim-
ilar to the common practices in NeRF editing and styliz-
ing [2, 8], we fix the weights regarding geometry compo-
nents in the NeRF model in the second optimization stage
for the steganography objectives.

We train the models including NeRF, the decoder and the
classifier using the Adam optimizer with the default param-
eters. The learning rate for NeRF follows the same strategy
in Plenoxel [7] and original NeRF [4]. To train the decoder
Fψ , we adopt the exponential decay learning rate sched-
uler, with initial learning rate as 10−3 and final learning rate
as 10−4. We leverage the same exponential decay strategy
to adjust the learning rate for classifier F cψ , with the initial
value as 10−4 and the final one as 10−5. On a machine with
NVIDIA A100 GPU, training 100 iterations takes around 1
minute.

We obtain the rendering and recovery performance on
each scene by the average results over all the testing views.
For the LPIPS error metrics we use the AlexNet imple-
mentation at https://github.com/richzhang/
PerceptualSimilarity.

*Equal contribution

B. Implementation of 2D Steganography for
Comparison

Due to lack of the official code of the 2D steganogra-
phy methods, we adopt the available PyTorch implementa-
tions. The code of LSB [3] can be found at https://
github.com/RobinDavid/LSB-Steganography.
We directly apply the encoding and decoding functions on
the training views of each scene. The code of DeepStega [1]
is provided at https://github.com/arnoweng/
PyTorch-Deep-Image-Steganography. We apply
the provided pretrained encoder and decoder in our experi-
ments. Note that the encoder in DeepStega is set to embed
the hidden images into the equal-size carriers. Therefore,
we upsample the target hidden images to be the same size
as the training views before applying DeepStega. We report
the SSIM scores for recovered hidden images after they are
downsampled back to the original size.

C. Network Architecture
C.1. Decoder

For the decoder Fψ , we adopt a U-Net [5] architecture
with the VGG-16 [6] backbone to recover the hidden im-
ages. For the downsampling brach of this U-Net, the chan-
nel numbers are 64, 128, 256, 512, and the bottleneck layer
transforms the feature maps from 512 channels to 256 chan-
nels. The upsampling branch of the U-Net is a mirrored
version of the downsampling brach.

To detect the hidden watermarks beyond image modality,
we replace the upsampling brach of the U-Net with a max-
pooling layer and two linear layers. These additional layers
produce an output with the same shape with the target multi-
modality information.

C.2. Classifier

We modify the VGG-16 backbone as the classifier F cψ in
StegaNeRF. We additionally introduce a max-pooling layer,
two linear layers, and a softmax activation. We set 2 out-
put channels for the single-scene embedding and the multi-

1

https://github.com/richzhang/PerceptualSimilarity
https://github.com/richzhang/PerceptualSimilarity
https://github.com/RobinDavid/LSB-Steganography
https://github.com/RobinDavid/LSB-Steganography
https://github.com/arnoweng/PyTorch-Deep-Image-Steganography
https://github.com/arnoweng/PyTorch-Deep-Image-Steganography

modal scenarios, and 4 output channels when embedding in
multiple scenes and multiple identities.

C.3. Quantitative Details of Ground-Truth

Fig. A2 and Fig. A3 demonstrate the ground-truth ren-
derings and hidden images in the experiments shown in the
main paper (Fig. 4-7).

C.4. Explanation on “N/A” Results

Here we clarify some experimental results of “N/A” in
the main paper. The 50% Acc. of “Standard NeRF” in
Tab. 1 and Tab. 3 mean that Standard NeRF can not gen-
erate discriminative renderings, so the classification is not
better than a binary guess. Meanwhile, the recovered hid-
den images from such renderings are always meaningless,
so the SSIM score computed based on the ground truth im-
ages is “N/A”. Furthermore, in Tab. 1, LSB and DeepStega
have “N/A” Acc. because they do not contain a classifier
branch as our method, so their classification results are not
available.

C.5. More Visualization from The Entire 3D Space

In Fig. A4-A12, we provide more visualization of the
StegaNeRF renderings as well as the residual error against
initial renderings. We can observe that the regions con-
taining hidden information (salient residual errors) are per-
sistent from the continuous multiple viewpoints in the 3D
space.

C.6. Quantitative Details on NeRF-W

Fig. A13 shows each cluster of views in the Brandenburg
Gate scene from NeRF-W. The views within each cluster
possess similar patterns and perspectives, while the inter-
cluster views significantly differ from each other.

C.7. In-Depth Study on The Failures of 2D
steganography

We perform experiments to understand how the hidden
information generated by 2D steganography methods gets
diminished in the NeRF renderings. Observing the fail-
ure of 2D steganography methods after NeRF, we hypoth-
esize that it is mainly due to the smoothing effect brought
by NeRF, which makes subtle high-frequency details in the
training images hard to be preserved in the rendered out-
put. To verify this, after embedding hidden information
in images with 2D steganography methods, we mimic the
smoothing effect of NeRF and apply Gaussian blur kernels
with various blur strength (different Gaussian standard de-
viations) and kernel sizes on those images with hidden in-
formation. As shown in Fig. A1, the effect of NeRF train-
ing and rendering is indeed similar to the effect of apply-
ing Gaussian blur with around 0.7-1.0 standard deviation
on images with hidden information. Such results reflect the

difficulty of directly applying existing steganography meth-
ods in NeRF training, and the affirm the necessity of our
proposed optimization framework.

0.0 0.2 0.4 0.6 0.8 1.0
Gaussian Blur Std.

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

SS
IM

ks=3
ks=5
ks=7
ks=9
NeRF

(a) Test Views

0.0 0.2 0.4 0.6 0.8 1.0
Gaussian Blur Std.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

SS
IM

ks=3
ks=5
ks=7
ks=9
NeRF

(b) Recovered Information

Figure A1. Analysis of the smoothing effect on 2D steganogra-
phy methods. After embedding hidden information into images
with 2D steganography methods, we train a NeRF on those im-
ages with embedded information and render at the test views. We
also embed hidden information with 2D methods into the ground
truth images at test views, and we directly apply the Gaussian blurs
on those images. We then compare the SSIM of (a) test views
and (b) recovered hidden information, from NeRF renderings and
from the blurred embedded images. We observe that the impact of
NeRF training and rendering is comparable to directly blurring the
embedded images with a kernel standard deviation around 0.7-1.0.

(a) (b)

Figure A2. Ground-truth images of renderings and hidden watermarks for (a) Fig. 4 and (b) Fig. 5 in in our main paper.

``A Roaring Tyrannosaurus``

``The Owner Of These Horns``

(a)

(b)

Figure A3. Ground-truth (images and other multi-modal signals) of renderings and multi-modal signals hidden watermarks for (a) Fig. 6
and (b) Fig. 7 in our main paper.

Figure A4. All the testing views rendered by StegaNeRF in lego scene.

Figure A5. The residual error (magnified by 5 times) of StegaNeRF renderings against initial ones on all the testing views in lego scene.

Figure A6. The residual error (magnified by 25 times) of StegaNeRF renderings against initial ones on all the testing views in lego scene.

Figure A7. All the testing views rendered by StegaNeRF in drums scene.

Figure A8. The residual error (magnified by 5 times) of StegaNeRF renderings against initial ones on all the testing views in drums scene.

Figure A9. The residual error (magnified by 25 times) of StegaNeRF renderings against initial ones on all the testing views in drums scene.

Figure A10. All the testing views rendered by StegaNeRF in chair scene.

Figure A11. The residual error (magnified by 5 times) of StegaNeRF renderings against initial ones on all the testing views in chair scene.

Figure A12. The residual error (magnified by 25 times) of StegaNeRF renderings against initial ones on all the testing views in chair scene.

(a)

(b)

(c)

Figure A13. The selected views for each cluster (user) as (a), (b) and (c). In each block, the first column indicates the anchor image while
the rest ones are the searched KNN views with the anchor one.

References
[1] Shumeet Baluja. Hiding Images in Plain Sight: Deep

Steganography. Advances in Neural Information Processing
Systems, 30, 2017. 1

[2] Zhiwen Fan, Yifan Jiang, Peihao Wang, Xinyu Gong, Dejia
Xu, and Zhangyang Wang. Unified implicit neural stylization.
In European Conference on Computer Vision, pages 636–654.
Springer, 2022. 1

[3] Shailender Gupta, Ankur Goyal, and Bharat Bhushan. Infor-
mation Hiding Using Least Significant Bit Steganography and
Cryptography. International Journal of Modern Education
and Computer Science, 4(6):27, 2012. 1

[4] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing Scenes As Neural Radiance Fields for View
Synthesis. Communications of the ACM, 65(1):99–106, 2021.
1

[5] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
net: Convolutional networks for biomedical image segmen-
tation. In International Conference on Medical image com-
puting and computer-assisted intervention, pages 234–241.
Springer, 2015. 1

[6] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014. 1

[7] Alex Yu, Sara Fridovich-Keil, Matthew Tancik, Qinhong
Chen, Benjamin Recht, and Angjoo Kanazawa. Plenoxels:
Radiance Fields Without Neural Networks. 2022 IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 5491–5500, 2022. 1

[8] Kai Zhang, Nick Kolkin, Sai Bi, Fujun Luan, Zexiang Xu, Eli
Shechtman, and Noah Snavely. Arf: Artistic radiance fields.
In European Conference on Computer Vision, pages 717–733.
Springer, 2022. 1

	. Detailed Experimental Setup
	. Implementation of 2D Steganography for Comparison
	. Network Architecture
	. Decoder
	. Classifier
	. Quantitative Details of Ground-Truth
	. Explanation on ``N/A'' Results
	. More Visualization from The Entire 3D Space
	. Quantitative Details on NeRF-W
	. In-Depth Study on The Failures of 2D steganography

