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A. Appendix
Overview. In addition to the main paper, we further list
the following details and more experiment results as sup-
plementary to our work.

1. More detailed description and comparison of Tube-
Link. (Sec. A.1)

2. Detailed experiment settings and implementation details
for each dataset. (Sec. A.2)

3. More ablation studies and experiment results.(Sec. A.3)

4. More visual results. (Sec. A.4)

A.1. More Detailed Description of Tube-Link

This section presents the method details, including
several baselines and Tube-Link inference for different
datasets. Then, due to the limited pages in the main pa-
per, we compare several closely related works in VIS and
VPS in detail.

Video K-Net+ Baseline. This baseline is based on two pre-
vious state-of-the-art methods, including Video K-Net [14]
and Mask2Former [4]. In particular, Video K-Net is based
on K-Net [31], an image panoptic segmentation model. We
replace K-Net with Mask2Former [4], and the remaining
parts are the same as the Video K-Net. Since the perfor-
mance of Mask2Former is better than K-Net on image seg-
mentation datasets, Video K-Net+ serves as the strong on-
line baseline for both VPS and VSS tasks.

Detailed Inference Procedure of Panoptic Matching.
During the inference, we perform tube-level panoptic
matching according to learned association embeddings only
on final panoptic tube masks. In particular, we save the in-
dex of each global query from the final panoptic tube re-
sults, and then we use these indexed queries via the embed-
ding head Emb.

Detailed Inference Procedure of VSS and VIS. Since
VSS does not need tracking, we do not apply the extra track-
ing embedding during the inference. Instead, the tube mask
logits are obtained directly from the dot product between

global queries and spatial-temporal decoder features. The
final segmentation labels are directly obtained via argmax
on predicted logits. For VIS, we follow nearly the same
procedure as VPS, except no stuff queries are involved.

More Detailed Comparison with Previous Nearly On-
line Approaches in VIS and VPS. In addition to the main
paper, in Tab. 1, we present a more detailed comparison
with previous works on VIS and VPS. From the table, our
method uses tube-wised matching and supports all three
video segmentation tasks in one architecture.

In particular, both SLOT-VPS [32] and SeqFormer [25]
also adopt multiple frames design. However, there are no
data association processes involved. Moreover, they are de-
signed for VIS and VPS, individually, and our method out-
performs the SeqFormer on two VIS datasets, as shown in
Tab. 6. Furthermore, unlike SLOT-VPS and SeqFormer, our
method can handle long video inputs.

Gen-VIS [9] also adopts the tube-wised design, which
combines the nearly online method and online method in
one framework. However, it can not support other video
segmentation tasks, including VSS and VPS. Moreover, it is
not verified in more complex scenes, including the driving
dataset KITTI-STEP [24] and the recent more challenging
dataset VIP-Seg [17]. In contrast, our Tube-Link is fully
verified by three different video segmentation tasks and five
different datasets. In particular, using the same ResNet50
backbone and detector [4], even without COCO video joint
training, our method works better than Gen-VIS [9], as
shown in Tab. 6.

A.2. Implementation Details

Detailed Training and Inference on VIP-Seg. We use the
COCO-pretrained model following [17]. The entire train-
ing process takes eight epochs. We adopt multiscale train-
ing where the scale ranges from 1.0 to 2.0 of the original
image size, and then we apply a random crop of 720 ×
720 patches. In particular, we perform the augmentation
for each frame in the sampled subclips. For the inference,
the subclip window size is set to six by default. We pad the
remaining frames in the last subclip by repeating the last
frame. We drop the padded results for evaluation.



Table 1: Different Setting Comparison with previous VIS and VPS methods.

Method VSS VIS VPS Online Nearly Online Joint Mulitple Frames Frame Matching Tube Matching Mask Matching No Association (use Query Index)
CFFM [20] ✓ ✓ ✓ ✓

MRCFA [21] ✓ ✓ ✓ ✓
Cross-VIS [29] ✓ ✓ ✓

IDOL [26] ✓ ✓ ✓
SeqFormer [25] ✓ ✓ ✓ ✓

EfficientVIS [27] ✓ ✓ ✓ ✓
VITA [10] ✓ ✓ ✓ ✓

Min-VIS [11] ✓ ✓ ✓
IFC [12] ✓ ✓ ✓ ✓

Gen-VIS [9] ✓ ✓ ✓ ✓ ✓
SLOT-VPS [32] ✓ ✓ ✓ ✓
TubeFormer [13] ✓ ✓ ✓ ✓ ✓ ✓
Video K-Net [14] ✓ ✓ ✓ ✓ ✓

Our Tube-Link ✓ ✓ ✓ ✓ ✓ ✓ ✓

Detailed COCO pretraining setting. For COCO [15]
panoptic segmentation dataset pretraining, all the models
are trained following original Mask2Former settings [31].
We adopt the multiscale training setting as previous
work [2] by resizing the input images such that the short-
est side is at least 480 and 800 pixels, while the longest
size is at most 1333. For data augmentation, we use the de-
fault large-scale jittering (LSJ) augmentation with a random
scale sampled from the range 0.1 to 2.0 with the crop size of
1024 × 1024. For ResNet50 [8] and Swin-base [16] model,
we train the model with 50 epochs following the original
settings. For STDC model [6], we train the model for 36
epochs.

Detailed Training and Inference on KITTI-STEP
dataset. For KITTI-STEP training, we follow previous
Motion-Deeplab [24] and Video K-Net [14], we adopt mul-
tiscale training where the scale ranges from 1.0 to 2.0 of
origin images size. We then apply a random crop of 384
× 1248 patches. The total training epoch is set to 12.
The inference procedure is the same as Cityscapes-VPS
dataset. Following the previous works [24, 14], we also use
Cityscapes dataset [5] pretraining before training on STEP.
Pretraining on Cityscapes STEP datasets further leads to 3%
VPQ and 2% STQ improvements. We adopt the same infer-
ence pipeline as VIP-Seg, where we set the subclip window
size to 2. We do not pre-train our model on the COCO
dataset for a fair comparison.

Detailed Training and Inference on VSPW dataset. We
adopt nearly the same training pipeline for VSPW as VIP-
Seg. The main difference is that we adopt longer training
epochs, where we set the training epochs to 12, where we
find about 1% mIoU gain over different baselines. More-
over, we remove the tracking loss since we only focus on
segmentation quality.

Detailed Training and Inference on Youtube-VIS-
2019/2021 datasets. We follow the same setting as
Mask2Former-VIS [3]. We train our models for 6k it-
erations, with a batch size of 16 for YouTubeVIS-2019

Table 2: More Ablation on Tube-Wised Matching in Youtube-
VIS dataset.

Settings Youtube-VIS-2019 Youtube-VIS-2021

tube size=1 47.8 44.2
tube size=2 49.8 45.9
tube size=3 51.3 46.2
tube size=4 52.8 47.9
tube size=6 51.2 46.8

Table 3: Ablation on Inference with Overlapped Frames. We
use the STDC-v1 backbone. The subclip window size is 6.

Settings STQ VPQ SQ FPS

No Overlapping 32.0 30.6 28.4 16.2
Overlapping=1 31.0 30.5 28.5 14.6
Overlapping=2 32.3 31.2 29.1 10.2
Overlapping=4 33.1 31.6 28.6 8.4

Table 4: Ablation on Effect of COCO Pretraining. We use the
STDC-v1 backbone.

Settings Method STQ VPQ SQ

w COCO pretrained Video K-Net+ 26.1 25.8 25.2
w/o COCO pretrained Video K-Net+ 12.4 12.4 18.3
w COCO pretrained Tube-Link 32.0 30.6 28.4
w/o COCO pretrained Tube-Link 21.8 16.8 20.3

and 8k iterations for YouTubeVIS-2021. All models are
initialized with COCO instance segmentation models of
Mask2Former. Different from previous SOTA VIS mod-
els [10, 25, 26], we only use YouTubeVIS training data,
and do not use COCO video images for data augmentation.
Moreover, we also do not apply clip-wised copy-paste that
is used in TubeFormer [13]. The same training procedure is
adopted for the OVIS dataset as well.



Table 5: Ablation on Training Epochs. We use the STDC-v1
backbone.

Settings STQ VPQ SQ

Epoch=4 29.2 28.1 26.5
Epoch=8 32.0 30.6 28.4
Epoch=12 31.6 30.8 29.1

A.3. More Ablations and Experiment Results

In this section, we first present more detailed ablations
for Tube-Link. Then, we present more detailed results
on several datasets, including VIS datasets [28], OVIS
dataset [19] and VSPW test set [18].

More Ablations on Effectiveness of Tube-Wised Match-
ing. In Tab. 2, we present more detailed ablations on tube
size in Youtube-VIS. Note that, for simplicity, the input sub-
clip size is the same as the tube size. As we enlarge the tube
size, we find a significant improvement in the final perfor-
mance. After enlarging the size to 4, the performance is the
best. Using a tube size of 6, the performance slightly de-
grades. However, it still performs better than single-frame
matching. All the models are trained under the same tube
size (default is 2). The findings also verify our motivation
for using clip-level matching, which shares similar findings
on the VIP-Seg dataset in the main paper.

Inference with Overlapped Frames in VIP-Seg. In Tab. 3,
we explore the effect of the overlapping size for nearby
windows. As shown in that table, increasing the overlap-
ping size leads to better performance for all three metrics:
VPQ, STQ, and SQ. This is because we can use multiple
frames twice, which leads to more consistent segmentation
results. Moreover, instances in smaller windows are eas-
ier to be tracked. However, to save computation costs and
increase inference speed, we do not introduce overlapping
during inference. All the results in the main paper use non-
overlapping inference.

Effect of COCO Pretraining in VIP-Seg. In Tab. 4, we
show the effect of COCO pretraining on both Video K-
Net+ and our Tube-Link. From the table, we can see that
COCO pretraining plays an important role for VIP-Seg
datasets, which shares the same conclusion with previous
work [14, 17]. Without COCO pretraining, both Video K-
Net+ and Tube-Link drop a lot. However, as shown in the
gray area, our method without COCO pretraining outper-
forms the Video K-Net+ baseline by a large margin, where
we still achieve over 8% STQ gain and 14% VPQ gain. The
results suggest the effectiveness of our framework on better
usage of temporal information.

Effect of Training Epoch on VIP-Seg. We perform ab-
lation on training epochs as in Tab. 5. With more train-

ing epochs, we do not observe performance gain with the
COCO pre-trained model due to the overfitting issues. We
use eight training epochs by default for all models.
Impact of Quasi-Dense Tracker. We adopt the same quasi-
dense tracker for all experiments in the main paper, and we
can achieve 3.0% VPQ improvement upon the baseline. In
Tab. 9, we perform an extra experiment by replacing our
tracker with a naive tracker used in MinVIS, where we only
found 0.2% mAP drop. This proves the robustness and gen-
eralizability of Tube-Link. In contrast, we add the quasi-
dense tracker to MinVIS, and we only find 0.6% mAP im-
provements. Directly extending a method with tube match-
ing leads to more improvements. The results also indicate
that the effect of the tracker is not apparent on the Youtube-
VIS dataset, since the instance number is limited and occlu-
sion is not heavy. Thus, we adopt simple tube-matching for
VIS datasets.

Detailed Results Youtube-VIS. In Tab. 6, we report the de-
tailed results on Youtube-VIS-2019 and Youtube-VIS-2021
datasets. We follow the baseline method, Mask2Former-
VIS [3]. As shown in that table, our method achieves all
the best metrics on both datasets without COCO video joint
training or clip-wised copy-paste.
More Results on Test Set.. Moreover, we also report our
results on the KITTI-STEP test set. As shown in Tab. 8b,
Our method can still achieve better results.

Detailed Results on OVIS. In Tab. 7, we also report our
model results on OVIS. Again, without bells and whistles,
our method achieves comparable results with IDOL. We use
the ResNet50 backbone for a fair comparison.

A.4. Visual Results

Visual Comparison on Youtube-VIS-2019 dataset. In
Fig. 1, we compare our Tube-Link with strong baseline
Mask2Former-VIS with the same ResNet50 backbone. Our
methods achieve more consistent tracking and segmentation
results in two examples.
More Visual Results on VIP-Seg Dataset. In Fig. 2, we
present more visual examples on our Tube-Link. Compared
with the Video K-Net+ baseline, our method achieves better
segmentation and tracking consistency.
Visual Results on KITTI-STEP Dataset. In Fig. 3, we
present visual results on the KITTI-STEP dataset, where we
achieve consistent segmentation and tracking on the driving
scene.
Failure Cases Analysis. In Fig. 4, we show several failure
cases on the KITTI-STEP and VIP-Seg datasets using our
best models. We observe three error sources: (1). remote
and small objects. (2). heavy occlusion. (3). segmentation
consistency caused by camera motion. We will handle these
issues in future work.



Table 6: Detailed Results on the Youtube-VIS datasets (2019/2021). We report the mAP metric. † adopts COCO video pseudo
labels [10, 9, 10]. Axial means using the extra Axial Attention [22]. Our method does not apply these techniques for simplicity.

Method Backbone YTVIS-2019 YTVIS-2021
- - AP AP50 AP75 AR1 AR10 AP AP50 AP75 AR1 AR10

VISTR [23] ResNet50 36.2 59.8 36.9 37.2 42.4 - - - - -
EfficientVIS [27] ResNet-50 37.9 59.7 43.0 40.3 46.6 34.0 57.5 37.3 33.8 42.5
TubeFormer [13] ResNet50 + Aixal 47.5 68.7 52.1 50.2 59.0 41.2 60.4 44.7 40.4 54.0
IFC [12] ResNet50 41.2 65.1 44.6 42.3 49.6 35.2 55.9 37.7 32.6 42.9
Seqformer [25] ResNet50 47.4 69.8 51.8 45.5 54.8 40.5 62.4 43.7 36.1 48.1
Mask2Former-VIS [3] ResNet50 46.4 68.0 50.0 - - 40.6 60.9 41.8 - -
IDOL [26] ResNet50 46.4 - - - - 43.9 - - - -
IDOL [26] † ResNet50 49.5 - - - - - - - - -
VITA [10] † ResNet50 49.8 72.6 54.5 49.4 61.0 45.7 67.4 49.5 40.9 53.6
Min-VIS [11] ResNet50 47.4 69.0 52.1 45.7 55.7 44.2 66.0 48.1 39.2 51.7
Cross-VIS [29] ResNet50 36.3 56.8 38.9 35.6 40.7 34.2 54.4 37.9 30.4 38.2
VISOLO [7] ResNet50 38.6 56.3 43.7 35.7 42.5 36.9 54.7 40.2 30.6 40.9
GenVIS [9] ResNet50 51.3 72.0 57.8 49.5 60.0 46.3 67.0 50.2 40.6 53.2
Tube-Link ResNet50 52.8 75.4 56.5 49.3 59.9 47.9 70.0 50.2 42.3 55.2
SeqFormer [25] Swin-large 59.3 82.1 66.4 51.7 64.4 51.8 74.6 58.2 42.8 58.1
Mask2Former-VIS [3] Swin-large 60.4 84.4 67.0 - - 52.6 76.4 57.2 - -
IDOL [26] Swin-large 61.5 - - - - 56.1 - - - -
IDOL [26] Swin-large † 64.3 87.5 71.0 55.6 69.1 56.1 80.8 63.5 45.0 60.1
VITA [10] † Swin-large 63.0 86.9 67.9 56.3 68.1 57.5 80.6 61.0 47.7 62.6
Min-VIS [11] Swin-large 61.6 83.3 68.6 54.8 66.6 55.3 76.6 62.0 45.9 60.8
Tube-Link Swin-large 64.6 86.6 71.3 55.9 69.1 58.4 79.4 64.3 47.5 63.6

Clip-1

Clip-2

Figure 1: Visual Comparison Results from Tube-Link with ResNet50 backbone. Our method (middle) achieves consistent
segmentation and better segmentation/tracking results than the Mask2Former-VIS baseline (top). We also visualize the
difference maps (bottom). Best viewed by zooming in.



Figure 2: More Visual Results from Tube-Link with ResNet50 backbone. Our method (top) achieves consistent segmentation
and better tracking results than the Video K-Net+ baseline (bottom). Best viewed by zooming in.

Table 7: Results on the OVIS datasets. We report the mAP
metric. † adopts COCO video pseudo labels. Axial means using
the extra Axial Attention [22]. Our method does not apply these
techniques for simplicity.

Method AP AP50 AP75 AR1 AR10

CrossVIS [29] 14.9 32.7 12.1 10.3 19.8
VISOLO [7] 15.3 31.0 13.8 11.1 21.7
TeViT [30] 17.4 34.9 15.0 11.2 21.8
VITA [10] 19.6 41.2 17.4 11.7 26.0
DeVIS [1] 23.8 48.0 20.8 - -
Min-VIS [11] 25.0 45.5 24.0 13.9 29.7
IDOL [26] 30.2 51.3 30.0 15.0 37.5
VITA [10] † 19.6 41.2 17.4 11.7 26.0
Tube-Link 29.5 51.5 30.2 15.5 34.5
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