
1. Additional Figures with Other Settings

Figure 1 illustrates the upper-bound performance of SNNs
across all eight settings.

2. Visualization of Dynamic Strategies

Dynamic strategies can be visualized in a three-
dimensional space with three axes representing the number
of layers, the number of channels, and precision, see Figure 2.
The majority of research into dynamic strategies, such as
BlockDrop [20], feature boosting and suppression [8], and
Dynamic Convolution [1], dynamically skip either layers
(see Figure 2.b.) or channels (see Figure 2.c.), optimizing
dimensions one and two respectively.

Some work on dynamic strategies (see Figure 2.d.) in
dimension three, the optimization of precision at runtime, has
been carried out. Song et al. proposed dynamic region-based
quantization (DRQ) in which a predictor classified regions in
an input image as requiring 8 bit or 4 bit weights [19]. Huang
et al. present a similar method in which the less significant
bits of an activation representation can be dynamically
masked to allow on-the-fly changes to the multiplications
carried out [14]. So far dynamic strategies for precision are
based on selecting a precision for a certain value from a
discrete set of integer precisions. This is in contrast with the
work presented in this paper where the effective activation
precision can be varied smoothly based on the inference
confidence by virtue of using an SNN model.

3. Spiking Neurons and ANN-to-SNN Conver-
sion

The neuronal dynamics of integrate-and-fire neuron in
SNNs is controlled by these two equations below:

ul
t = ul

t−1(1− zl
t−1) + W̃ lzl−1

t + B̃l (1)

zl
t = Θ(ul

t − thl) (2)

In these equations, ul
t is the membrane potential of spiking

neurons in layer l at time t. ul
t−1 is the membrane potential

at the previous time step t− 1. W̃ l is the weight and B̃l is
the bias in layer l. Θ(·) denotes the Heaviside step function,
and it returns 1 if the value in the bracket is higher than zero;
otherwise it returns 0. thl is the threshold in layer l, and zl

t

is the output spike in this layer at time t.
ANN-to-SNN conversion is using spiking neurons to

achieve the computations that happen in artificial neurons.
The information processing in the artificial neurons in layer
l is

yl = σ(W lyl−1 +Bl) (3)

Figure 1. The upper-bound performance of SNNs when fully
utilizing dynamic strategies at runtime, as shown by the red curves.
The black curves represent baseline SNN performance without
dynamic strategies.

where σ(·) is the ReLU activation function, W l and Bl

denote the weight and the bias in layer l, yl is the output of
layer l, and yl−1 is the output in the previous layer.

The original method to conduct ANN-to-SNN conversion
is called data-based normalization [4], where the SNN
parameters are calculated by

W̃ l =
λl−1W l

λl
(4)

B̃l =
Bl

λl
(5)

thl = 1 (6)



Figure 2. The visualization of dynamic strategies in a three-
dimensional space. The cuboid in a. represents a neural network
model without applying any dynamic strategies. For each example,
the whole model capability will be used to generate outputs. b.
c. d. apply dynamic strategies in the dimension of layer, channel,
and precision, respectively. These dynamic strategies can adapt
to different examples. Instead of the full model capacity, only
a portion of computational resources, just enough to generate
reliable outputs (The colored part of the cuboid), will be allocated
for a given example. Each example has heterogeneous resource
allocation.

In these equations, λl and λl−1 are the maximum ANN
activation value in layer l and the previous layer l − 1
respectively.

4. LSQ

LSQ, or Learned Step Size Quantization [6], is a method
to build low-precision ANNs. Compared with other
quantization-aware training approaches, the quantization
scale factors in LSQ are trainable, which benefits to better
mapping from full-precision values to quantized values.

A quantization operator is defined by

v̂ = s⌊clip(v
s
,−QN , QP )⌉, (7)

where v is the full-precision value before quantization, s
is a quantization scale factor. clip(z,−QN , QP ) clips z to
the range of (−QN , QP ). For example, in 2-bit activation
quantization, this range is (0, 3). ⌊z⌉ is rounding operation
that rounds z to the nearest integer.

During training, the gradient of ∂v̂
∂v is defined by applying

straight-through estimators [18], which is

∂v̂

∂v
=


1 if −QN < v

s < QP

0 if v
s ≤ −QN

0. if v
s ≥ QP

(8)

The gradient of ∂v̂
∂s is

∂v̂

∂s
=


− v

s + ⌊ v
s ⌉ if −QN < v

s < QP

−QN if v
s ≤ −QN

QP , if v
s ≥ QP

(9)

which is also calculated by applying straight-through estima-
tors. The detailed calculations are shown below.

∂v̂

∂s
= s⌊v

s
⌉ if −QN <

v

s
< QP

= s
′
⌊v
s
⌉+ s⌊v

s
⌉
′

= ⌊v
s
⌉+ s(⌊·⌉

′
(
v

s
)
′
)

= ⌊v
s
⌉+ s(

v

s
)
′

= ⌊v
s
⌉+ s(− v

s2
)
′

= ⌊v
s
⌉ − v

s

(10)

5. QCFS and QFFS
In this Section, we first formulate the target ANN

computations to be simulated in SNNs by QCFS and QFFS.
After replacing ReLU in Equation 3 with the activation
quantization operator defined in Equation 7, the computation
in a layer of ANN becomes

yl = sl⌊clip(W
lyl−1 +Bl

sl
,−QN , QP )⌉. (11)

Our experiments use 2-bit activation quantization where QN

is 0 and QP is 3, so this equation becomes

yl =l ⌊clip(W
lyl−1 +Bl

sl
, 0, 3)⌉. (12)

QCFS. The spiking neuronal model used in QCFS is the
soft-reset integrate-and-fire neuron, which is

ul
t = ul

t−1 + W̃ lzl−1
t thl−1 + B̃l − zl

t−1th
l, (13)



Table 1. Latency advantages brought by Dynamic Confidence in 8 different experimental settings. The accuracy is compromised for better
latency.

Dataset Architecture Method Acc(ANN)(%) Acc(SNN)(%) Averaged time steps Latency saving(%)

CIFAR-10

VGG-16

QCFS 92.41 92.31 27
QCFS + Dynamic Confidence 92.41 92.31 10.85 60%

QFFS 92.41 92.31 6
QFFS + Dynamic Confidence 92.41 92.31 2.87 52%

ResNet-18

QCFS 93.79 94.00 19
QCFS + Dynamic Confidence 93.79 94.00 8.03 63%

QFFS 93.79 93.79 4
QFFS + Dynamic Confidence 93.79 93.79 2.16 46%

ImageNet

VGG-16

QCFS 72.40 73.00 33
QCFS + Dynamic Confidence 72.40 73.00 27.90 15%

QFFS 72.40 72.52 4
QFFS + Dynamic Confidence 72.40 72.40 2.78 31%

ResNet-50

QCFS 72.60 70.50 94
QCFS + Dynamic Confidence 72.60 70.50 67.22 28%

QFFS 72.60 72.56 6
QFFS + Dynamic Confidence 72.60 72.56 3.79 37%

zl
t = Θ(ul

t − thl). (14)

There are three parameters (W̃ , B̃l, and thl) that need to
be calculated according to ANN parameters. The equations
are provided below:

W̃ 1 = W l (15)

B̃1 = Bl (16)

thl = 3sl. (17)

Note that, unlike QFFS, QCFS does not have a maximum
spike count limitations per neuron (Z max in Equation 19)
to model the clipping operation on QP in the target ANN
(Equation 12). As a result, after the simulation of QFFS
stops, QCFS can continue to simulate and at a time point, its
accuracy will surpass that of QFFS.

QFFS. The spiking neuronal model used in QFFS is
the soft-reset integrate-and-fire neuron with negative spikes,
which is defined by the equations below:

ul
t = ul

t−1 + W̃ lzl−1
t thl−1 + B̃l − zl

t−1th
l (18)

zl
t = Θ(ul

t − thl)Θ(Zmax −Zl
t−1)−Θ(−ul

t)Θ(Zl
t−1)

(19)

Zl
t = Zl

t−1 + zl
t. (20)

Zmax is the maximum spike count limitation, and Zl
t records

the accumulated spike counts. The ANN-to-SNN conversion
is achieved according to the equations below:

W̃ l = W l (21)

B̃l = Bl (22)

thl = 3sl (23)

Zmax = 3 (24)

6. Configuration Overhead of Dynamic Confi-
dence

The configurations of Dynamic Confidence have three
steps as illustrated in main sections. In step 1 an ANN model
is run for one epoch on a small valid set for calibration, this
cost is about 600 times lower than the whole training cost and
it can be faithfully ignored. Step 2 calculates a scale factor
α to use in inference, which does not bring any overhead.
In step 3 the confidence threshold thc is calculated by
Pareto Front. Generally, Pareto Front can be very expensive
since Pareto Front replies on high-resolution search space to
ensure the performance of the Pareto-optimal one. However,
Dynamic Confidence is very power efficient as our proposed
method is highly robust to the search resolution of thc

when applying Pareto Front. This robustness may come
from step 2 which softens the confidence value before
computing Pareto Front. Second, we emphasize that even
applying a high search resolution of thc such as 0.0001,



the computational complexity of the Pareto Front is still
trivial, only if exploiting the monotonicity of thresholded
classifications, similar to the trick used when calculating
ROC curve in machine learning[7]. Specifically, any
input samples that are terminated by Dynamic Confidence
with respect to a given thc will be terminated for all
lower thresholds. Leveraging this property, a high-search-
resolution Pareto Front can be created by running an SNN
once on a valid set, and then, on the collected SNN outputs
conducting a linear scan of thc (which can be done in a few
seconds on a laptop). In summary, the main overhead of
Dynamic Confidence at the configuration phase is running
an ANN and an SNN on a valid set, which is trivial and can
be ignored.

7. More Results with Compromised Accuracy
Table 1 displays the results of compromising the accuracy

of SNNs to achieve better latency.

8. More Related Work
Model Compression. In order to deploy neural network
algorithms on resource-constrained edge devices and to meet
the edge restraints on model size, inference latency, and
power cost, several model compression techniques have been
proposed such as quantization [10, 2, 16, 6]; structured and
unstructured pruning [11, 10]; compact network architecture
design [12, 13, 15]; neural architecture search (NAS) [5, 17];
and algorithm-hardware co-design [9].

The model compression techniques introduced above
optimize the neural network model in an offline manner
and will not adapt to inputs during execution. This
paper, on the other hand, is focused on runtime dynamic
optimization methods (also called dynamic strategies or
adaptive computation) that can choose different computing
strategies for different input images. Our method is
orthogonal to these model compression techniques and
could be combined with them to further improve SNN
performance.

9. More Discussions
Except for Pareto Front, thc can be calculated by such

as applying reinforcement learning or SGD learning (SGD
learning needs to define the exact form of the gradients of
thc, where surrogate gradients may be desirable). These
methods may be more effective to find better thresholds, but
this paper emphasizes the efficiency of our method, so does
not involve learning and keep it post-hoc.

Rate-coding is generally considered inefficient in its use
of spikes [3]. However, the method we have developed
exploits the smoothly variable precision available with rate-
coding to process incoming data incrementally, opening the
door to saving compute resources by early exiting from the

inference pipeline. The efficiency of this kind of approach
in terms of the number of operations is dependent on the
number of input examples that are ‘easy’ and allow for early
exiting. In other words, Applying Dynamic Confidence on
less challenging datasets such as MNIST and CIFAR-10 can
render greater improvements than on ImageNet.

In applications where model input data are streams of
events directly from sensors, such as with event camera input
or event-based scintillation detectors, Dynamic Confidence
can provide a reduction in the latency between event genera-
tion and model output. This makes Dynamic Confidence a
particularly attractive candidate algorithm for exploration in
low-power low-latency edge computing.

References
[1] Yinpeng Chen, Xiyang Dai, Mengchen Liu, Dongdong Chen,

Lu Yuan, and Zicheng Liu. Dynamic convolution: Attention
over convolution kernels. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 11030–11039, 2020. 1

[2] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David.
Binaryconnect: Training deep neural networks with binary
weights during propagations. Advances in neural information
processing systems, 28, 2015. 4

[3] Simon Davidson and Steve B Furber. Comparison of artificial
and spiking neural networks on digital hardware. Frontiers in
Neuroscience, 15:651141, 2021. 4

[4] Peter U Diehl, Daniel Neil, Jonathan Binas, Matthew Cook,
Shih-Chii Liu, and Michael Pfeiffer. Fast-classifying, high-
accuracy spiking deep networks through weight and threshold
balancing. In 2015 International Joint Conference on Neural
Networks (IJCNN), pages 1–8. ieee, 2015. 1

[5] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter.
Neural architecture search: A survey. The Journal of Machine
Learning Research, 20(1):1997–2017, 2019. 4

[6] Steven K Esser, Jeffrey L McKinstry, Deepika Bablani, Rathi-
nakumar Appuswamy, and Dharmendra S Modha. Learned
step size quantization. arXiv preprint arXiv:1902.08153,
2019. 2, 4

[7] Tom Fawcett. An introduction to roc analysis. Pattern
recognition letters, 27(8):861–874, 2006. 4

[8] Xitong Gao, Yiren Zhao, Łukasz Dudziak, Robert Mullins,
and Cheng-zhong Xu. Dynamic channel pruning: Feature
boosting and suppression. arXiv preprint arXiv:1810.05331,
2018. 1

[9] Song Han. Efficient methods and hardware for deep learning.
PhD thesis, Stanford University, 2017. 4

[10] Song Han, Huizi Mao, and William J Dally. Deep
compression: Compressing deep neural networks with
pruning, trained quantization and huffman coding. arXiv
preprint arXiv:1510.00149, 2015. 4

[11] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for
accelerating very deep neural networks. In Proceedings of
the IEEE international conference on computer vision, pages
1389–1397, 2017. 4



[12] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco
Andreetto, and Hartwig Adam. Mobilenets: Efficient
convolutional neural networks for mobile vision applications.
arXiv preprint arXiv:1704.04861, 2017. 4

[13] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and
Kilian Q Weinberger. Densely connected convolutional
networks. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 4700–4708, 2017. 4

[14] Kai Huang, Bowen Li, Dongliang Xiong, Haitian Jiang,
Xiaowen Jiang, Xiaolang Yan, Luc Claesen, Dehong Liu,
Junjian Chen, and Zhili Liu. Structured Dynamic Precision
for Deep Neural Networks Quantization. ACM Transactions
on Design Automation of Electronic Systems, page 3549535,
July 2022. 1

[15] Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid
Ashraf, William J Dally, and Kurt Keutzer. Squeezenet:
Alexnet-level accuracy with 50x fewer parameters and¡ 0.5
mb model size. arXiv preprint arXiv:1602.07360, 2016. 4

[16] Ji Lin, Ligeng Zhu, Wei-Ming Chen, Wei-Chen Wang,
Chuang Gan, and Song Han. On-device training under 256kb
memory. arXiv preprint arXiv:2206.15472, 2022. 4

[17] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens,
Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille, Jonathan Huang,
and Kevin Murphy. Progressive neural architecture search. In
Proceedings of the European conference on computer vision
(ECCV), pages 19–34, 2018. 4

[18] Emre O Neftci, Charles Augustine, Somnath Paul, and
Georgios Detorakis. Event-driven random back-propagation:
Enabling neuromorphic deep learning machines. Frontiers in
neuroscience, 11:324, 2017. 2

[19] Zhuoran Song, Bangqi Fu, Feiyang Wu, Zhaoming Jiang,
Li Jiang, Naifeng Jing, and Xiaoyao Liang. DRQ:
Dynamic Region-based Quantization for Deep Neural
Network Acceleration. In 2020 ACM/IEEE 47th Annual
International Symposium on Computer Architecture (ISCA),
pages 1010–1021, May 2020. 1

[20] Zuxuan Wu, Tushar Nagarajan, Abhishek Kumar, Steven
Rennie, Larry S Davis, Kristen Grauman, and Rogerio Feris.
Blockdrop: Dynamic inference paths in residual networks. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 8817–8826, 2018. 1


