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1. Introduction
This document is a supplement to the article Virtual Try-

On with Pose-Garment Keypoints Guided Inpainting (KGI).
The supplementary materials include implementation de-
tails, illustrations and visualizations that are not included
in the main paper due to the page limit. The checklist is
shown below:

• results of user study.

• experiments of ablation study.

• structures of KGI submodules (including the pose-
oriented garment keyponts prediction model, the target
segmentation map generation model, and the semantic
conditioned inpainting model).

• hyper-parameter configurations for the model training.

• illustrations of the person image recomposition.

• visualizations of the experimental results.

2. User Study
Following [7], we conducted a user study to compare the

results of our method with two baselines: VITON-HD [1]
and HR-VITON [7].

There are 30 volunteers participating in the user study.
The participants are given 30 sets of image samples, and
each set contains the generated results of three methods and
the target garment image for reference. In different sets,
the orders of the generated images are shuffled. The users
are asked to answer two questions: (1) Which image is the
most photo-realistic? (2) Which image preserves the details
of the given clothing the most?

The statistics of the user study are presented in Figure I.
In 62.2% of total cases, the result of our method is chosen
as the most photo-realistic one; In 80.1% of total cases, the
result of our method is chosen as the one preserves the most
clothing details. The results of user study show that our
method performs better than baselines.

Method SSIM↑ LPIPS↓ FID↓ KID↓
CP-VTON+ warping [8] 0.868 0.071 10.44 0.359
VITON-HD warping [1] 0.868 0.072 9.04 0.247
HR-VITON warping [7] 0.874 0.067 8.14 0.189
Our warping 0.878 0.062 6.38 0.084

Table I. Comparison of different warping methods.

3. Ablation Study
3.1. Ablation Study on Warping Methods

To verify the necessity of the proposed keypoints guided
warping method, we kept the diffusion inpainting module
unchanged and replaced our keypoints guided warping with
warping results of three prior methods: CP-VTON+ [8]
(TPS-based), VITON-HD [1](TPS-based), and HR-VITON
[7](Flow-based). We conducted experiments at paired set-
ting with 256 × 192 image resolution. From experimental
results shown in Table I, we observed that our keypoints
warping method contributes in improving performance and
consistently outperforms prior TPS-based and Flow-based
warping methods in terms of various evaluation metrics.

3.2. Ablation Study on Neck Segmentation

The generated images have similar collars with the
source persons because we kept neck segmentation while
generating the garment-agnostic segmentation map. To ana-
lyze the impact of keeping/removing neck segmentation, we
conducted experiments for ablation study at both paired and
unpaired setting with 1024× 768 image resolution. The re-
sults in Table II show that keeping/removing neck segmen-
tation does NOT significantly affect the quantitative results
and our method performs better than baselines with either
scheme. Besides, the FID and KID scores under unpaired
setting are larger than paired setting with either scheme. It is
reasonable as the generated images are paired with ground
truth images (the same person wearing the same garment) in
the paired setting, and thus has smaller data gap than the un-
paired setting where the generated images and ground truth
images are the same person with different garments.



Figure I. User study results.

Figure II. Network Architecture of the Pose-Oriented Garment Keypoints Prediction Model.

Scheme Paired Setting Unpaired Setting
SSIM↑ LPIPS↓ FID↓ KID↓ FID↓ KID↓

keep neck 0.900 0.066 6.93 0.077 10.33 0.179
remove neck 0.900 0.067 6.96 0.078 10.00 0.137

Table II. Ablation study on neck segmentation.

4. Implementation Details of the Neural Net-
work Models

In KGI, three neural network models are developed for
pose-oriented garment keypoints prediction task, target seg-
mentation map generation task and semantic conditioned
inpainting task, respectively. We introduce the implementa-
tion details of these networks in this section.

4.1. Pose-Oriented Garment Keypoints Prediction
Model

The Pose-Oriented Garment Keypoints Prediction
Model is implemented with a two stream graph convolu-
tional neural network as illustrated in Figure II, which con-
sists of one garment graph embedding stream and one pose

graph embedding stream. The garment graph embedding
stream is sequentially built with 8 blocks. The skip con-
nection is used to pass the residual information in some
blocks. The blocks are constructed with SemGraphConv
[17], BatchNorm [5], and ReLU [9] layers. The implemen-
tation details of the garment graph embedding blocks are
provided in Table III. The pose graph embedding stream
consists of network blocks. Three blocks are used for fea-
ture embedding and the others are employed for feature re-
shaping. The reshaped features are passed to the garment
graph embedding stream to provide pose information as
conditions. The implementation details of the pose graph
embedding blocks are listed in Table IV.

In Tables III - IV, the parameters of the SemGraphConv
layer are the number of input feature dimensions and the
number of output feature dimensions, respectively. The val-
ues of the output shape are batch size, the number of nodes
and the number of feature dimensions, from left to right.



Table III. Implementation Details of the Pose-Oriented Garment
Keypoints Prediction Model (Garment Graph Embedding Stream)

Block Layer Parameters Output Shape

1
SemGraphConv [2, 160]

[B, 32, 160]BatchNorm /
ReLU /

2-1
SemGraphConv [320, 160]

[B, 32, 160]BatchNorm /
ReLU /

2-2

SemGraphConv [160, 160]

[B, 32, 160]

BatchNorm /
ReLU /
SemGraphConv [160, 160]
BatchNorm /
ReLU /

3-1
SemGraphConv [320, 160]

[B, 32, 160]BatchNorm /
ReLU /

3-2

SemGraphConv [160, 160]

[B, 32, 160]

BatchNorm /
ReLU /
SemGraphConv [160, 160]
BatchNorm /
ReLU /

4-1
SemGraphConv [320, 160]

[B, 32, 160]BatchNorm /
ReLU /

4-2

SemGraphConv [160, 160]

[B, 32, 160]

BatchNorm /
ReLU /
SemGraphConv [160, 160]
BatchNorm /
ReLU /

4-3 SemGraphConv [160, 2] [B, 32, 2]Sigmoid /

Table IV. Implementation Details of the Pose-Oriented Garment
Keypoints Prediction Model (Pose Graph Embedding Stream)

Block Layer Parameters Output Shape

5-1
SemGraphConv [2, 512]

[B, 10, 512]BatchNorm /
ReLU /

5-2 Reshape / [B, 32, 160]

6-1
SemGraphConv [512, 512]

[B, 10, 512]BatchNorm /
ReLU /

6-2 Reshape / [B, 32, 160]

7-1
SemGraphConv [512, 512]

[B, 10, 512]BatchNorm /
ReLU /

7-2 Reshape / [B, 32, 160]

4.2. Target Segmentation Map Generation Model

The Target Segmentation Map Generation Model is im-
plemented with a typical U-Net architecture [12], which
consists of encoder blocks, transition blocks, decoder
blocks, and output blocks, as shown in Figure III.

The encoder blocks are divided into 5 groups, and each
group includes a strided convolutional block for downsam-
pling, a residual block and an activation block. The resid-
ual block [3] is constructed with sequentially connected
Conv2d, InstanceNorm [13], and ReLU layers. The imple-
mentation details of the encoder blocks are provided in Ta-
ble V. The transition blocks include one 1x1 convolutional
block, one residual block and one activation block for latent
feature transition. The details about the transition blocks
are listed in Table VI. Similar to the encoder blocks, the de-
coder blocks are grouped in five parts. Each part consists
of an upsampling block, a residual block and an activation
block. The upsampling block takes the output of the pre-
vious layer and also the embedding features of the corre-
sponding encoder blocks passed via the skip connection. In
the upsampling block, an upsampling function is used to in-
crease the size of the input features. The details about the
decoder blocks are shown in Table VII. The structure of the
output blocks are similar to the transition blocks, as listed
in Table VIII.

In Tables V-VIII, the parameters of the Conv2d layer
are input channel, output channel, kernel size, stride, and
padding, from left to right. For Upsample layers, the pa-
rameter two is the scale for upsampling. sThe values of the
output shape column are batch size, output channel, height,
and width, respectively. B, H, and W are notations referring
to batch size, the height and width of the input image.

4.3. Semantic Conditioned Inpainting Model

The Semantic Conditioned Inpainting Model is imple-
mented with a conditioned U-Net style neural network,
which takes the image, timestep, and target segmentation
map as inputs. As shown in Figure IV, the input image is
fed into the forward stream of the network. The timestep
embedding and the segmentation maps are used as condi-
tions.

The network is constructed with encoder blocks, tran-
sition blocks, decoder blocks, the output block and the
timestep embedding block. As shown in Table IX, the
timestep embedding block [4] consists of TimestepEmbed,
Linear, SiLU [2] layers, which is used to embed the input
timestep of the diffusion process.

The encoder blocks are divided into 7 groups. Each
group consists of several timestep embedding residual
blocks. As shown in Figure V, the timestep embedding
residual block is further divided into four sub-blocks: A, B,
C, D. Block A is constructed with GroupNorm [16], SiLU
[2] and Conv2d layers for feature embedding. AverPool2d



Figure III. Network Architecture of the Target Segmentation Map Generation Model.

Figure IV. Network Architecture of the Semantic Conditioned Inpainting Model.

Figure V. Illustration of the Timestep Embedding Residual Block.

is used in the last timestep embedding residual block of each
group for downsampling. Block B is constructed with SiLU
[2] and Linear layers for timestep embedding. Block C is
constructed with GroupNorm [16], SiLU [2], and Conv2d
layers to fuse feature and timestep embedding. Block D
is used for skip connection. If the input channel and out-

put channel of the Block A are different, the Block D is
implemented with 1x1 Conv2d layer. If the input size and
output size of the Block A are different, the Block D is im-
plemented with AverPool2d. In the group 6 and 7, atten-
tion blocks are added after the timestep embedding residual
blocks. The details of encoder blocks are listed in Table (X,
XI, XII, and XIII).

The transition blocks include two timestep embedding
residual blocks and one attention block. Different from en-
coder blocks, the timestep embedding residual blocks take
the target segmentation map as the condition and replace
the conventional GroupNorm [16] layer with the SPADE-
GroupNorm [10, 15] layer. The details are listed in Table
XIV.

The decoder blocks are divided into 7 groups like en-
coder blocks. Each group contains several timestep em-
bedding residual blocks and attention blocks [14] (group
9 and 10 only). The timestep embedding residual block
takes the embedding of corresponding encoder blocks via
the skip connection; the last timestep embedding residual
block of each group contains upsampling layers in Block
A and Block D to increase the size of feature maps. Simi-



Table V. Implementation Details of the Target Pose Generation
Model (Encoder Blocks)

Block Layer Parameters Output Shape
1-1 Conv2d [19, 64, 3, 2, 1] [B, 64, H/2, W/2]

1-2

Conv2d [64, 64, 3, 1, 1]

[B, 64, H/2, W/2]
InstanceNorm /
ReLU /
Conv2d [64, 64, 3, 1, 1]
InstanceNorm /

1-3 ReLU / [B, 64, H/2, W/2]
2-1 Conv2d [64, 128, 3, 2, 1] [B, 128, H/4, W/4]

2-2

Conv2d [128, 128, 3, 1, 1]

[B, 128, H/4, W/4]
InstanceNorm /
ReLU /
Conv2d [128, 128, 3, 1, 1]
InstanceNorm /

2-3 ReLU / [B, 128, H/4, W/4]
3-1 Conv2d [128, 256, 3, 2, 1] [B, 256, H/8, W/8]

3-2

Conv2d [256, 256, 3, 1, 1]

[B, 256, H/8, W/8]
InstanceNorm /
ReLU /
Conv2d [256, 256, 3, 1, 1]
InstanceNorm /

3-3 ReLU / [B, 256, H/8, W/8]
4-1 Conv2d [256, 256, 3, 2, 1] [B, 256, H/16, W/16]

4-2

Conv2d [256, 256, 3, 1, 1]

[B, 256, H/16, W/16]
InstanceNorm /
ReLU /
Conv2d [256, 256, 3, 1, 1]
InstanceNorm /

4-3 ReLU / [B, 256, H/16, W/16]
5-1 Conv2d [256, 256, 3, 2, 1] [B, 256, H/32, W/32]

5-2

Conv2d [256, 256, 3, 1, 1]

[B, 256, H/32, W/32]
InstanceNorm /
ReLU /
Conv2d [256, 256, 3, 1, 1]
InstanceNorm /

5-3 ReLU / [B, 256, H/32, W/32]

Table VI. Implementation Details of the Target Segmentation Gen-
eration Model (Transition Block)

Block Layer Parameters Output Shape
6-1 Conv2d [256, 512, 1, 1, 0] [B, 512, H/32, W/32]

6-2

Conv2d [512, 512, 3, 1, 1]

[B, 512, H/32, W/32]
InstanceNorm /
ReLU /
Conv2d [512, 512, 3, 1, 1]
InstanceNorm /

6-3 ReLU / [B, 512, H/32, W/32]

lar to the transition blocks, the SPADEGroupNorm [10, 15]
is adopted for segmentation map conditioning. The imple-
mentation details about the decoder blocks are listed in Ta-
ble (XV, XVI, XVII, and XVIII).

The output block is constructed with sequentially con-
nected GroupNorm [16], SiLU [2], and Conv2d layers, as
presented in Table XIX.

In Tables IX-XIX, the parameters of the Conv2d layer
are input channel, output channel, kernel size, stride, and
padding, respectively. The parameters of the Linear layer
are the input and output feature dimensions, respectively.

Table VII. Implementation Details of the Target Generation Model
(Decoder Blocks)

Block Layer Parameters Output Shape

7-1
Upsample [2]

[B, 256, H/16, W/16]
Conv2d [512, 256, 1, 1, 0]

7-2

Conv2d [256, 256, 3, 1, 1]

[B, 256, H/16, W/16]
InstanceNorm /
ReLU /
Conv2d [256, 256, 3, 1, 1]
InstanceNorm /

7-3 ReLU / [B, 256, H/16, W/16]

8-1
Upsample [2]

[B, 256, H/8, W/8]
Conv2d [512, 256, 1, 1, 0]

8-2

Conv2d [256, 256, 3, 1, 1]

[B, 256, H/8, W/8]
InstanceNorm /
ReLU /
Conv2d [256, 256, 3, 1, 1]
InstanceNorm /

8-3 ReLU / [B, 256, H/8, W/8]

9-1
Upsample [2]

[B, 128, H/4, W/4]
Conv2d [512, 128, 1, 1, 0]

9-2

Conv2d [128, 128, 3, 1, 1]

[B, 128, H/4, W/4]
InstanceNorm /
ReLU /
Conv2d [128, 128, 3, 1, 1]
InstanceNorm /

9-3 ReLU / [B, 128, H/4, W/4]

10-1
Upsample [2]

[B, 64, H/2, W/2]
Conv2d [256, 64, 1, 1, 0]

10-2

Conv2d [64, 64, 3, 1, 1]

[B, 64, H/2, W/2]
InstanceNorm /
ReLU /
Conv2d [64, 64, 3, 1, 1]
InstanceNorm /

10-3 ReLU / [B, 64, H/2, W/2]

11-1
Upsample [2]

[B, 64, H, W]
Conv2d [128, 64, 1, 0, 0]

11-2

Conv2d [64, 64, 3, 1, 1]

[B, 64, H, W]
InstanceNorm /
ReLU /
Conv2d [64, 64, 3, 1, 1]
InstanceNorm /

11-3 ReLU / [B, 64, H, W]

Table VIII. Implementation Details of the Target Generation
Model(Output Block)

Block Layer Parameters Output Shape
12-1 Conv2d [83, 64, 1, 1, 0] [B, 64, H, W]

12-2

Conv2d [64, 64, 3, 1, 1]

[B, 64, H, W]
InstanceNorm /
ReLU /
Conv2d [64, 64, 3, 1, 1]
InstanceNorm /

12-3
ReLU /

[B, 13, H, W]
Conv2d [64, 13, 1, 1, 0]

The parameters of the AvePool2d layer are kernel size and
stride, respectively. For Upsample layers, the parameter 2 is
the scale for upsampling. For GroupNorm layer, the param-
eter 30 is the number of channels. For SPADEGroupNorm,
the parameters are the number of channels in group and the



Figure VI. Illustration of the Person Image Recomposition.

number of classes in segmentation map. The values of the
output shape column are batch size, output channel, height,
and width, respectively. B, H, and W are notations referring
to batch size, the height and width of the input image.

5. Hyper-Parameter Con�gurations for the
Model Training

In experiments, we implement all the models using Py-
Torch [11] with version 1.10.0. The hyper-parameter con-
�gurations for model training are set as below.

For the Pose-Oriented Garment Keypoints Prediction
model, we train the neural network for 300,000 iteration
steps with a learning rate1 � 10� 3, using the Adam op-
timizer [6]. The batch size is set as16. The weights for
the nodes term� N and edges term� E are set as1 and1,
respectively.

For the Target Segmentation Generation model, we train
the neural network for 2,000 iteration steps with a learning
rate2 � 10� 4, using the Adam optimizer [6] for optimiza-
tion. The batch size is set as 4.

For the Semantic Conditioned Inpainting model, the net-
work is trained for 300,000 iteration steps with a learning
rate1 � 10� 4. The Adam optimizer [6] is adopted for opti-
mization. Due to the limitation of GPU resources, the batch
size is set as2, 2, and1 for the experiments at256� 192,
512� 384, and1024� 768 image resolution settings, re-
spectively. The number of diffussion steps is set as1; 000.

All the models are trained with the training split of the
VITON-HD dataset [1]. No data augmentations or addi-

tional data are used for the model training.

6. Illustration of the Person Image Recomposi-
tion

As introduced in the the main paper, after the pose-
oriented garment keypoints prediction and the target seg-
mentation map generation, we recompose the given person
image with the warped garment. Afterwards, the recom-
posed person image is treated as the incomplete try-on re-
sult to be inpainted.

As illustrated in Figure VI, the person image recompo-
sition consists of two steps: original garment removing and
target garment pasting.

The original garment removing step aims to remove the
garment from the given person image and get a garment-
agnostic person image. To ensure the original garment is
fully removed, we follow [7] and use the pose keypoints ex-
tracted from the person image to draw a coarse mask where
black regions refer to the regions to be removed. As shown
in Figure VI, the coarse mask covers the region of human
body, garments and the background. Since the task of vir-
tual try-on is to replace the speci�c garment region only,
a �ne mask is then produced by pruning the coarse mask
according to the original and target segmentation maps.
Speci�cally, the regions have the consistent semantics (ex-
pect for the upper body garment and the background) in
both segmentation maps are clipped from the coarse remov-
ing mask. The garment-agnostic person image is generated
with the guide of the �ne mask.



The target garment pasting step, just as its name implies,
is to paste the warped garment onto the garment-agnostic
person image. Similar to our TPS scheme, the garment
pasting is performed in a divide and conquer manner. Five
segments of garment image are sequentially pasted onto the
garment-agnostic person image if the corresponding pixels
in the target segmentation map are predicted as the target
garment.

7. Visualizations of the Experimental Results

To demonstrate the effectiveness of our proposed method
and the superiority compared to prior methods [1, 7], we
include more visualization results for supplementary. Fig-
ure VII shows the examples generated with baselines and
our KGI method. For each row, the images are given gar-
ment, given person, result of VITON-HD [1], result of HR-
VITON [7], result of KGI (Ours), and a real image for ref-
erence. The results show that the try-on results generated
with our KGI method have higher �delity with more pat-
tern details kept and less color and shape distortions.

For the ablation study experiments to study the necessity
of different conditions and the impact of the number of dif-
fusion step, we only include 1 example in the main paper
due to the page limit. More visualizations of the ablation
study experiments are provided in this Figure VIII and Fig-
ure IX. The Figure VIII illustrates the contributions of the
warped garment and the target segmentation map. We can
observe that the garment region of the results, without the
warped garment as condition, are arbitrary and the textures
are in monotonous color. Without the target segmentation
map, the generation results present some semantic errors
and the garment shapes are inconsistent with the ground
truth. Figure IX shows the examples of generation results
with different length of diffusion steps. With the increase
of the number of the diffusion steps, the generation results
are more realistic. Speci�cally, the textures of the inpainted
garment region are more delicate and harmonious with the
known pixels of the input image.

Figure X presents the visualization results of the pose-
oriented garment keypoints prediction. From the left to
right, the illustrations are given garment images, garment
keypoints, pose keypoints, the predicted pose-oriented gar-
ment keypoints, the ground truth pose-oriented garment
keypoints, and the given person images, respectively.

Since the semantic conditioned inpainting with diffusion
models includes a random sampling process. To verify the
stability of the generation, we visualize the generation re-
sults with different sampling noises, as shown in Figure XI.
We �nd that our method can successfully and stably gen-
erate try-on results. The differences between the examples
generated using different sampling noises are subtle.
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Figure VII. Examples of the Comparisons with Prior Methods. The examples are given garment images, given person images, the results
of VITON-HD, the results of HR-VITON, the results of KGI (Ours), and a real image for reference.


