
Appendix

A. Inference Loss Function

Food101 CIFAR10 Aircraft Oxford Pets Flowers102 STL10 ImageNet ObjectNet

Squared `2 77.9 76.3 24.3 85.7 56.8 94.2 58.4 38.3
`1 74.3 87.1 18.3 86.2 59.4 95.3 58.0 32.2
Huber 77.9 76.9 23.7 85.5 57.5 94.2 58.9 38.1

Table 4. Diffusion Classifier zero-shot performance with different loss functions L(✏� ✏✓(xt, c)).

ImageNet ImageNetV2 ImageNet-A

Squared `2 77.3 64.5 19.6
`1 74.4 60.8 9.4

Table 5. Diffusion Classifier supervised performance with different loss functions L(✏� ✏✓(xt, c)).

While the theory in Section 3 justifies using k✏ � ✏✓(xt, c)k22 within the Diffusion Classifier inference objective, we
surprisingly find that other loss functions can work better in some cases. Table 4 shows that using the `1 loss instead of the
squared `2 loss to evaluate the magnitude of ✏ � ✏✓(xt, c) does better on roughly half of the datasets that we use to evaluate
the Stable Diffusion-based zero-shot classifier. This is puzzling, since the `1 loss is neither theoretically justified nor appears
in the Stable Diffusion training objective. We hope followup work can explain the empirical success of the `1 loss.

Combining these two losses does not get the “best of both worlds.” The Huber loss, which is the squared `2 loss for values
less than 1 and is the `1 loss for values greater than 1, roughly achieves the same performance as the theoretically-justified
squared `2 loss. Table 5 shows that `1 does not help with supervised classification (Section 6.4) using DiT-XL/2 at 256⇥256.

B. Inference Costs and Hybrid Classification Approach

Food101 CIFAR10 Aircraft Oxford Pets Flowers102 STL10 ImageNet

Diffusion Classifier 77.9 76.3 24.3 85.7 56.8 94.2 58.4
Time/img (s) 51 30 51 18 51 30 1000

Diffusion Classifier w/ Prune 78.9 76.3 24.6 85.4 59.8 94.2 60.5
Time/img (s) 35 30 35 18 35 30 150
Est. Time/img (s) at 1282 res 2 2 2 1 2 2 9

CLIP ResNet-50 81.1 75.6 19.3 85.4 65.9 94.3 58.2

Table 6. Zero-shot accuracy and inference time with Stable Diffusion 512 ⇥ 512. “Pruning” away unlikely classes with a weak
discriminative classifier (e.g., CLIP ResNet-50) increases accuracy and reduces inference time. Additionally, reducing resolution to 128⇥
128 would reduce inference time by roughly 16⇥. However, its impact on accuracy is difficult to estimate without retraining the Stable
Diffusion model to expect lower resolutions. All times are estimated using a RTX 3090 GPU.

Table 1 shows the inference time of Diffusion Classifier when using the efficient Diffusion Classifier algorithm (Algo-
rithm 2). Classifying a single image takes anywhere between 18 seconds (Pets) to 1000 seconds (ImageNet). The issue
with ImageNet is that Diffusion Classifier inference time still approximately scales linearly with the number of classes, even
when using the adaptive strategy. One way to address this problem is to use a weak discriminative model to quickly “prune”
away classes that are almost certainly incorrect. Table 1 shows that using CLIP ResNet-50 to restrict the search to the top 20
classes greatly reduces inference time, while even improving performance. This works even when the top-1 accuracy of the
ResNet-50 is low, like on Aircraft.

C. Techniques that did not help
Diffusion Classifier requires many samples to accurately estimate the ELBO. In addition to using the techniques in Sec-

tion 3 and 4, we tried several other options for variance reduction. None of the following methods worked, however. We list
negative results here for completeness, so others do not have to retry them.

Classifier-free guidance Classifier-free guidance [36] is a technique that improves the match between a prompt and gener-
ated image, at the cost of mode coverage. This is done by training a conditional ✏✓(xt, c) and unconditional ✏✓(xt) denoising
network and combining their predictions at sampling time:

✏̃(xt, c) = (1 + w)✏✓(xt, c)� w✏✓(xt) (10)

where w is a guidance weight that is typically in the range [0, 10]. Most diffusion models are trained to enable this trick by
occasionally replacing the conditioning c with an empty token. Intuitively, classifier-free guidance “sharpens” log p✓(x | c)
by encouraging the model to move away from regions that unconditionally have high probability. We test Diffusion Classifier
to see if using the ✏̃ from classifier-free guidance can improve confidence and classification accuracy. Our new ✏-prediction
metric is now k✏� (1 + w)✏✓(xt, c)� w✏✓(xt)k2. However, Figure 8 shows that w = 0 (i.e., no classifier-free guidance)
performs best. We hypothesize that this is because Diffusion Classifier fails on uncertain examples, which classifier-free
guidance affects unpredictably.

Error map cropping The ELBO Et,✏[k✏� ✏✓(xt, c)k2] depends on accurately estimating the added noise at every location
of the 64 ⇥ 64 ⇥ 4 image latent. We try to reduce the impact of edge pixels (which are less likely to contain the subject) by
computing xt as normal, but only measuring the ELBO on a center crop of ✏ and ✏✓(xt, c). We compute:

k✏[i:�i,i:�i] � ✏✓(xt, c)[i:�i,i:�i]k2 (11)

where i is the number of latent “pixels” to remove from each edge. However, Figure 9 shows that any amount of cropping
reduces accuracy.

Figure 8. Accuracy plot of classifier-free guidance on Pets. Figure 9. Cropping ✏ and ✏✓(xt, c) reduces accuracy on Pets.

Importance sampling Importance sampling is a common method for reducing the variance of a Monte Carlo estimate.
Instead of sampling ✏ ⇠ N (0, I), we sample ✏ from a narrower distribution. We first tried fixing ✏ = 0, which is the mode of
N (0, I), and only varying the timestep t. We also tried the truncation trick [7] which samples ✏ ⇠ N (0, I) but continually
resamples elements that fall outside the interval [a, b]. Finally, we tried sampling ✏ ⇠ N (0, I) and rescaling them to the
expected norm (✏ ! ✏

k✏k2
E✏0 [k✏0k2])) so that there are no outliers. Table 7 shows that none of these importance sampling

strategies improve accuracy. This is likely because the noise ✏ sampled with these strategies are completely out-of-distribution
for the noise prediction model. For computational reasons, we performed this experiment on a 10% subset of Pets.

D. Additional Implementation Details
D.1. Efficient Diffusion Classifier Algorithm

Though Diffusion Classifier works straightforwardly with the procedure described in Algorithm 1, we are interested
in speeding up inference as described in Section 4.2. Algorithm 2 shows the efficient Diffusion Classifier procedure that
adaptively chooses which classes to continue evaluating.

Sampling distribution for ✏ Pets accuracy

✏ = 0 41.3
TruncatedNormal, [�1, 1] 49.9
TruncatedNormal, [�2.5, 2.5] 81.5
Expected norm 86.9
✏ ⇠ N (0, I) 87.5

Table 7. Every importance sampling strategy underperforms sampling the noise ✏ from a standard normal distribution.

Algorithm 2 Efficient Diffusion Classifier

1: Input: test image x, conditioning inputs {ci}n
i=1 (e.g., text embeddings or class indices), number of stages Nstages, list

KeepList of number of ci to keep after each stage, list TrialList of number of trials done by each stage
2: Initialize Errors[ci] = list() for each ci

3: C = {ci}n
i=1

4: PrevTrials = 0
5: for stage i = 1, . . . , Nstages do
6: for trial j = 1, . . . ,TrialList[i]� PrevTrials do
7: Sample t ⇠ [1, 1000]
8: Sample ✏ ⇠ N (0, I)
9: xt =

p
↵̄tx +

p
1� ↵̄t✏

10: for conditioning ck 2 C do
11: Errors[ck].append(k✏� ✏✓(xt, ck)k2)
12: end for
13: end for
14: // Keep best KeepList[i] ck with the lowest errors
15: C arg min

S⇢C;
|S|=KeepList[i]

X

ck2S
mean(Errors[ck])

16: PrevTrials = TrialList[i]
17: end for
18: return arg min

ci2C
mean(Errors[ci])

D.2. Zero-shot classification using Diffusion Classifier

Training Data For our zero-shot Diffusion Classifier, we utilize Stable Diffusion 2.1 [64]. This model was trained on
a subset of the LAION-5B dataset, filtered so that the training data is aesthetic and appropriately safe-for-work. LAION
classifiers were used to remove samples that are too small (less than 256 ⇥ 256), potentially pornographic (punsafe � 0.1),
or unaesthetic (aesthetic score < 4.5). These thresholds are relatively conservative, since false negatives (NSFW or un-
desirable images left in the training set) are worse than removing extra images from a large starting dataset. As dis-
cussed in Section 6.1, these filtering criteria bias the distribution of Stable Diffusion training data and likely negatively
affect Diffusion Classifier’s performance on datasets whose images do not satisfy these criteria. The checkpoint we use
was trained for 550k steps at resolution 256 ⇥ 256 on this subset, followed by an additional 850k steps at resolution
512 ⇥ 512 on images that are at least that large. This checkpoint can be downloaded online through the diffusers reposi-
tory at stabilityai/stable-diffusion-2-1-base.

Inference Details We use FP16 and Flash Attention [15] to improve inference speed. This enables efficient inference with
a batch size of 32, which works across a variety of GPUs, from RTX 2080Ti to A6000. We found that adding these two tricks
did not affect test accuracy compared to using FP32 without Flash Attention. Given a test image, we resize the shortest edge
to 512 pixels using bicubic interpolation, take a 512 ⇥ 512 center crop, and normalize the pixel values to [�1, 1]. We then
use the Stable Diffusion autoencoder to encode the 512⇥ 512⇥ 3 RGB image into a 64⇥ 64⇥ 4 latent. We finally classify
the test image by applying the method described in Sections 3 and 4 to estimate ✏-prediction error in this latent space.

Dataset Prompts kept per stage Evaluations per stage Avg. evaluations per class Total evaluations

Food101 20 10 5 1 20 50 100 500 50.7 5120
CIFAR10 5 1 100 500 300 3000
FGVC Aircraft 20 10 5 1 20 50 100 500 51 5100
Pets 5 1 25 250 51 1890
Flowers102 20 10 5 1 20 50 100 500 50.4 5140
STL10 5 1 100 500 300 3000
ImageNet 500 50 10 1 50 100 500 1000 100 100000
ObjectNet 25 10 5 1 50 100 500 1000 118.6 13400

Table 8. Evaluation strategy for each zero-shot dataset.

Resolution ImageNet accuracy (%)

256⇥ 256 77.3
512⇥ 512 80.1

Table 9. Diffusion Classifier ImageNet accuracy improves when using higher resolution DiT models.

Sampling Strategy Table 8 shows the evaluation strategy used for each zero-shot dataset. We hand-picked the strategies
based on the number of classes in each dataset. Further gains in accuracy may be possible with more evaluations.

D.3. Compositional reasoning using Diffusion Classifier
For our experiments on the Winoground benchmark [74], most details are the same as in Appendix D.2. We use Stable

Diffusion 2.1, and we evaluate each image-caption pair with 250 timesteps. We omit the adaptive inference strategy since
there are only 4 image-caption pairs to evaluate for each Winoground example.

D.4. ImageNet classification using Diffusion Classifier
For this task, we use the recent Diffusion Transformer (DiT) [57] as the backbone of our Diffusion Classifier. DiT was

trained on ImageNet-1k, which contains about 1.28 million images from 1,000 classes. While it was originally trained to
produce high-quality samples with strong FID scores, we repurpose the model and compare it against discriminative models
with the same ImageNet-1k training data. We use the DiT-XL/2 model sizes. Inference with DiT-XL/2 at resolution 512⇥512
is about 4 times more expensive than 256⇥256, but it performs better (see Table 9). Notably, DiT achieves strong performance
while using much weaker data augmentations than what discriminative models are usually trained with. During training time
for the 256 ⇥ 256 checkpoint, the smaller edge of the input image is resized to 256 pixels. Then, a 256 ⇥ 256 center crop
is taken, followed by a random horizontal flip, followed by embedding with the Stable Diffusion autoencoder. At test time,
we follow the same preprocessing pipeline, but omit the random horizontal flip. Classification performance could improve if
stronger augmentations, like RandomResizedCrop or color jitter, are used during the diffusion model training process.

D.5. Baselines for Zero-Shot Classification
Synthetic-SD: We provide the implementation details of the “Synthetic-SD” baseline (row 1 of Table 1) for the task of

zero-shot image classification. Our Diffusion Classifier approach builds on the intuition that a model capable of generating
examples of desired classes should be able to directly discriminate between them. In contrast, this baseline takes the simple
approach of using our generative model, Stable Diffusion, as intended to generate synthetic training data for a discriminative
model. For a given dataset, we use pre-trained Stable Diffusion 2.1 with default settings to generate 10,000 synthetic
512 ⇥ 512 pixel images per class as follows: we use the English class name and randomly sample a template from those
provided by the CLIP [59] authors to form the prompt for each generation. We then train a supervised ResNet-50 classifier
using the synthetic data and the labels corresponding to the class name that was used to generate each image. We use batch
size = 256, weight decay = 1e � 4, learning rate = 0.1 with a cosine schedule, the AdamW optimizer, and use random
resized crop & horizontal flip transforms. We create a validation set using the synthetic data by randomly selecting 10% of
the images for each class; we use this for early stopping to prevent over-fitting. Finally, we report the accuracy on the target
dataset’s proper test set.

Arch Conv1 Conv2 Conv3 x2 Conv4 x2 Conv5 x2
ResNet-18 7x7x64 3x3 max-pool 3x3x128 3x3x256 3x3x512

ResNet-18 (Real-Labeled-SD) 3x3x1280 - 3x3x1280 3x3x2560 3x3x2560

Table 10. Comparison of Real-Labeled-SD’s ResNet-18 classifier architecture with the original ResNet-18

Real-Labeled-SD: We provide the implementation details of the “Real-Labeled-SD” baseline (row 2 of Table 1) for
the task of image classification. This baseline is inspired by Label-DDPM [3], a recent work on diffusion-based semantic
segmentation. Unlike Label-DDPM, which leverages a category-specific diffusion model, we directly build on top of the
open-sourced Stable Diffusion model (trained on the LAION dataset). We then approach the task of classification as follows:
given the pre-trained Stable Diffusion model, we extract the intermediate U-Net features corresponding to the input image.
These features are then passed through a ResNet-based classifier to predict the corresponding class name. To extract the
intermediate U-Net features, we add a noise equivalent to the 100th timestep noise to the input image and evaluate the
corresponding noisy latent using the forward diffusion process. We then pass the noisy latent through the U-Net model,
conditioned on timestep t = 100 and text conditioning (y) as an empty string, and extract out the features from the mid-
layer of the U-Net at a resolution of [8 × 8 × 1024]. Next, we train a supervised classifier on top of these features. Thus,

this baseline is not zero-shot. The architecture of our classifier is similar to ResNet-18, with small modifications to make it
compatible with an input size of [8⇥ 8⇥ 1024]. Table 10 defines these modifications. We set batch size = 16, learning rate
= 1e � 4, and use AdamW optimizer. During training, we do augmentations similar to the original ResNet (Random Crop
and Flip). We do early stopping using the validation set to prevent over-fitting. We use the official train-test splits for each
dataset, except ImageNet and ObjectNet. For these two datasets, we perform class sub-sampling and use the same train-test
split as our model. We do this to achieve fair comparisons with the other baselines.

	. Introduction
	. Related Work
	. Method: Classification via Diffusion Models
	. Diffusion Model Preliminaries
	. Classification with diffusion models
	. Variance Reduction via Difference Testing

	. Practical Considerations
	. Effect of timestep
	. Efficient Classification

	. Experimental Details
	. Zero-shot Classification
	. Supervised Classification

	. Experimental Results
	. Zero-shot Classification Results
	. Analyzing Diffusion Classifier for Zero-Shot Classification
	. Improved Compositional Reasoning Abilities
	. Supervised Classification Results

	. Conclusion and Discussion
	. Inference Loss Function
	. Inference Costs and Hybrid Classification Approach
	. Techniques that did not help
	. Additional Implementation Details
	. Efficient Diffusion Classifier Algorithm
	. Zero-shot classification using Diffusion Classifier
	. Compositional reasoning using Diffusion Classifier
	. ImageNet classification using Diffusion Classifier
	. Baselines for Zero-Shot Classification

