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1. Hyper-parameters in the Pose Solver

We use both RANSAC/PnP [15] and Progressive-X [1]
when evaluating the results on the LM dataset [6], and
we use Progressive-X for LM-O [2] and YCB-V [24]
datasets. For both pose solvers, we set the threshold of re-
projection error as 2 pixels. We run 150 iterations when
using RANSAC/PnP and run 400 iterations when using
Progressive-X.

2. Additional Ablation Experiments on
LINEMOD Dataset

Theoretically, increasing the number of keypoint N
leads to more candidate 3D-2D correspondences and en-
hances the robustness of pose estimation. In our current
implementation, we adopt k = 20 in EdgeConv follow-
ing [23], and N = 512 based on our available computation
resources. We also conduct ablation studies of N and k on
the LM dataset in Table 1, showing that larger N and k help
improve the performance.

N k
ADD(-S)

2◦2cm 5◦5cm
0.02d 0.05d 0.1d

128
10 29.4 81.3 96.4 75.6 98.8
15 29.2 81.0 96.1 74.8 98.6
20 29.8 82.0 96.5 77.6 98.7

256
10 36.0 84.2 96.8 79.1 98.8
15 32.0 83.4 96.8 78.1 98.8
20 33.6 82.9 96.4 75.8 98.8

512
10 30.4 82.0 96.6 76.3 98.7
15 29.9 82.8 96.3 76.4 98.5
20 35.7 84.5 97.1 79.7 98.9

Table 1: Ablation Study of N and k on the LM Dataset.

3. Filtering Operation on LM-O and YCB-V

As discussed in the main paper, we empirically find that
for a textureless object O with severe self-occlusions, fil-
tering out the correspondences outside the visible segmen-
tation masks Mvis can improve the pose estimation results.
We quantify the self-occlusions of O using rso(O). As a
common practice, the visibility of point P ∈ O from each
viewpoint can be determined by checking the intersections
between the camera rays and the object mesh. However,
this may produce undesired results for our task. For ex-
ample, the mesh of the bowl in the YCB-V dataset can be
treated as a half sphere with very small thickness. When
sampling the dense keypoints from the surface, we get key-
points from both outer side and inner side. For the key-
point on the inner side of the bowl, it is considered as easily
self-occluded when we use ray intersections to determine
the visibility. However, since the bowl is textureless and
the thickness of the mesh can be ignored, the keypoint is
equivalent to the nearest surface point on the outer side, and
should not be considered as easily self-occluded. Consider-
ing this issue and the slow computation speed, we instead
use Hidden Point Removal (HPR) operator [13] to estimate
the proportion V (P ) of the viewpoints for which P is visi-
ble. For a keypoint with high V (P ), it may be consistently
misclassified as invisible by the HPR operator, so we ignore
the points with V (P ) < 0.2 estimated by the HPR operator.

We report the value of rso(O) for each object O of the
LM-O dataset in Table 2. Since these objects do not have
strong textures, we apply the filtering operation during the
inference for the objects with rso(O) ≥ 0.5.

For the objects that requires filtering operation, we re-
port the ADD(-S) metric without filtering in Table 3. We
also report the results of using different segmentation masks
to filter the correspondences in Table 3. Without the filter-
ing operation, the ADD(-S) values decreases for all the ob-
jects. Since all the 2D projections should be located within
the full segmentation mask Mfull, using Mfull to filter the
correspondences aims to discard the wrong predictions out-



Object rso filtering

ape 0.356 ✗
can 0.650 ✓
cat 0.584 ✓

driller 0.657 ✓
duck 0.483 ✗

eggbox 0.529 ✓
glue 0.362 ✗

holep. 0.354 ✗

Table 2: Quantitative measure rso of the self-occlusions
of the objects on LM-O [2]. Since the objects do not have
strong textures, for the objects with rso ≥ 0.5, we apply
the filtering operation during inference, i.e., discarding the
correspondences outside the visible segmentation masks.

Object w/o Filter w/ Filter (Mfull) w/ Filter (Mvis)

can 95.2 95.1 95.7
cat 62.0 61.3 62.3

driller 92.6 92.6 93.7
eggbox 68.8 69.6 70.0

Table 3: ADD(-S) metrics on LM-O [2] w.r.t. the filtering
operation. “w/o Filter” denotes using all predicted corre-
spondences to compute the pose. “w/ Filter (Mfull)” denotes
discarding the correspondences outside the full segmenta-
tion mask Mfull, while “w/ Filter (Mvis)” denotes discard-
ing the correspondences outside the full segmentation mask
Mvis.

side the object area. However, it does not improve the final
estimations consistently, which indicates that we still need
to discard more unstable correspondences within the object
area.

We report the values of rso for the textureless objects
in the YCB-V dataset in Table 4. According to Table 4,
only one textureless object, i.e., 061 foam brick, requires
filtering operation due to severe self-occlusions.

We further report the ADD(-S) metric w.r.t. the filter-
ing operation for 061 foam brick in Table 5. The ADD(-S)
of 061 foam brick remains the same without filtering op-
eration or using Mfull rather than Mvis in the filtering op-
eration. This observation suggests that the localization of
the easily self-occluded regions may become stable after
380,000 training steps. We further investigate the results of
061 foam brick after different training steps in Table 6. Af-
ter 200,000 steps, the ADD(-S) without filtering is inferior
to the result of discarding correspondences outside Mvis.
This observation implies that the localization of the easily
self-occluded regions are unstable with fewer training steps.

Besides textureless objects with severe self-occlusions,

Object rso filtering

011 banana 0.240 ✗
019 pitcher base 0.221 ✗

024 bowl 0.498 ✗
025 mug 0.108 ✗

036 wood block 0.438 ✗
037 scissors 0.365 ✗

051 large clamp 0.163 ✗
052 extra large clamp 0.138 ✗

061 foam brick 0.542 ✓

Table 4: Quantitative measure rso of the self-occlusions
of the textureless objects on YCB-V [24]. For the ob-
ject with rso ≥ 0.5, we apply the filtering operation during
inference, i.e., discarding the correspondences outside the
visible segmentation masks.

Object w/o Filter w/ Filter (Mfull) w/ Filter (Mvis)

008 pudding box 66.4 71.0 86.5
061 foam brick 87.2 87.2 87.2

Table 5: ADD(-S) metrics on YCB-V [24] w.r.t. the fil-
tering operation. “w/o Filter” denotes using all predicted
correspondences to compute the pose. “w/ Filter (Mfull)”
denotes discarding the correspondences outside the full seg-
mentation mask Mfull, while “w/ Filter (Mvis)” denotes dis-
carding the correspondences outside the full segmentation
mask Mvis.

Steps w/o Filter w/ Filter (Mfull) w/ Filter (Mvis)

200k 86.1 85.4 86.8
380k 87.2 87.2 87.2

Table 6: ADD(-S) metrics of 061 foam brick with differ-
ent training steps. “w/o Filter” denotes using all predicted
correspondences to compute the pose. “w/ Filter (Mfull)”
denotes discarding the correspondences outside the full seg-
mentation mask Mfull, while “w/ Filter (Mvis)” denotes dis-
carding the correspondences outside the full segmentation
mask Mvis.

we also apply filtering operation on 008 pudding box
from the YCB-V dataset. As shown in Figure 1,
008 pudding box is severely occluded by 009 gelatin box.
We regard 009 gelatin box as a distraction object for the
keypoint localization task of 008 pudding box, since these
objects share similar appearances, especially the texts (i.e.,
“JELL-O”). Such severe occlusions by the same distrac-
tion object exist in all the test images of 008 pudding box,
and can be automatically detected by checking the object
detection results. Thus we discard the correspondences out-



Figure 1: Example of test images for 008 pudding box
from the YCB-V dataset. We visualize the zoomed-in
RoI based on the detection results. For all test images,
008 pudding box (the brown box) is severely occluded by
009 gelatin box (the red box).

side Mvis to remove the unstable localization results due to
the occlusions by the distraction object. We also report the
ADD(-S) metric without filtering and using Mfull in filter-
ing in Table 5. Using either Mfull or Mvis to filter the corre-
spondences improve the pose estimation results compared
with using all predicted correspondences. This indicates
that the filtering operation can remove extreme outliers that
are far from 008 pudding box to improve the pose estima-
tion. Using Mvis in the filtering operations obtains better
results than Mfull, which demonstrates that the localization
results of the keypoints occluded by the distraction object
are not accurate enough for recovering the pose.

4. Evaluation of 2D-3D Correspondences
The evaluation results in the main paper focus on the fi-

nal estimated poses. We additionally evaluate the quality
of the established dense correspondences before RANSAC.
Specifically, for each test sample, we reproject the 3D key-
points by the ground truth pose and compute the mean dis-
tance between the reprojection results and predicted 2D lo-
cations. For symmetric objects, we use the equivalent rota-
tion closest to our final estimated pose. To obtain the inlier
ratio of the estimated correspondences, we regard a key-
point as an inlier if its reprojection error is less than 5 pix-
els. We compute the average reprojection error and inlier
ratio for each object and report the average values over the
whole dataset in Table 7.

5. BOP Results on LM-O and YCB-V
We report the performance of our method on LM-O and

YCB-Video using the evaluation metrics from BOP chal-
lenge [7] in Table 8 and Table 9, respectively. We mainly

Dataset LM LM-O YCB-V

reprojection error (pixel) 3.4 14.4 10.9
inlier ratio (%) 88.4 67.8 39.6

Table 7: Evaluation results of predicted dense corre-
spondences.

Method ARMSPD ARMSSD ARVSD AR

SurfEmb [5] 85.1 64.0 49.7 66.3
Coupled [16] 83.1 63.3 50.1 65.5

Zebra [20] 88.0 72.1 55.2 71.8
NCF [11] – – – 63.2
PFA [8] 83.7 66.1 52.3 67.4

CRT-6D [4] 83.7 64.0 50.4 66.0
GDRNPP [17] 88.7 70.1 54.9 71.3

Ours 87.3 72.3 53.7 71.1

Table 8: Results on LM-O dataset under BOP setup [7].
The results of Coupled [16] and NCF [11] are obtained
from the original paper, and the results of other meth-
ods are obtained from https://bop.felk.cvut.
cz/leaderboards/. We highlight the best result in red
color, and the second best result in blue color. “–” denotes
unavailable results.

select baselines from officially published work. We also
include the results of GDRNPP [17] for reference, which
improves upon GDR-Net [22] with implementation skills
including stronger domain randomization, more powerful
detectors, etc., to compensate for the domain gap between
training and test images. Without these implementation
skills, our method still achieves comparable performance
with the state-of-the-art methods, including the refinement
based method [16].

6. Detailed Results of YCB-V
We report the detailed evaluation metrics of each ob-

ject on YCB-V dataset [24] in Table 10 and Table 11. Our
method outperforms previous methods w.r.t. ADD(-S) and
AUC of ADD(-S), and achieves comparable performance
with state of the art w.r.t. AUC of ADD-S.

7. Qualitative Results
We provide additional qualitative results for LM-O [2]

and YCB-V [24] in Figure 2 and Figure 3, respectively.
We render the 3D CAD model based on the predictions of
CheckerPose, and highlight the contour in green. We also
highlight the ground truth contour in blue. For better visu-
alization, we crop the images and we also show the original
input image on the left for LM-O and YCB-V.

https://bop.felk.cvut.cz/leaderboards/
https://bop.felk.cvut.cz/leaderboards/


Method ARMSPD ARMSSD ARVSD AR

SurfEmb [5] 77.3 62.0 54.8 64.7
Coupled [16] 85.2 83.5 78.3 82.4

Zebra [20] 86.4 83.0 75.1 81.5
NCF [11] – – – 77.5
PFA [8] 84.9 81.4 75.8 80.7

SC6D [3] 80.4 79.6 69.5 76.5
CRT-6D [4] 77.4 77.6 70.6 75.2

GDRNPP [17] 86.9 84.6 76.0 82.5

Ours 85.3 84.4 70.7 80.1

Table 9: Results on YCB-Video dataset under BOP
setup [7]. The results of Coupled [16] and NCF [11]
are obtained from the original paper, and the results of
other methods are obtained from https://bop.felk.
cvut.cz/leaderboards/. We highlight the best re-
sult in red color, and the second best result in blue color.
“–” denotes unavailable results.

Furthermore, we provide more keypoint localization re-
sults of duck, bowl, and banana in Figure 4. For better vi-
sualization we only plot eight keypoints that are evenly dis-
tributed over the object surface. While our network directly
outputs the 2D locations, the results of other dense meth-
ods [20, 22] are computed by projecting the keypoints using
the estimated poses. Considering the symmetry of the bowl,
we use the equivalent rotations closest to our prediction to
project the keypoints of bowl.

8. Failure Cases and Future Work
We visualize typical failure cases in Figure 5. As shown

in Figure 5 (a) and (b), the textureless object eggbox from
LM-O dataset is severely occluded by a toy car, and a dis-
traction object with similar color also partially appears in
the input RoI. As a result, the estimated 2D projections are
shifted towards the distraction object. We also present a
failure case of objects with textures in Figure 5 (c) and (d).
The object in interest is 002 master chef can from YCB-V
dataset, which is geometrically symmetric. Though the tex-
ture is almost symmetric as well, the barcode only appears
on one side of the object, which causes the asymmetry. For
the given input RoI, the keypoints are localized in the oppo-
site directions, w.r.t. the central axis.

To improve the localization results, one future direc-
tion is the selection of 3D keypoints. Since we adopt
farthest point sampling algorithm to obtain evenly dis-
tributed keypoints, we ignore other factors to make the
keypoints more representative. For example, the issue of
002 master chef can may be solved by sampling more key-
points in the barcode area. Besides, no positional encod-
ing [18, 21] is leveraged in graph feature aggregation and

image feature fusion operations. Such encoding can pro-
vide additional cues for textureless regions. In future, we
will explore the positional encoding to enhance the keypoint
localization process.
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Figure 2: Qualitative results on the LM-O dataset. For each image on the left, we visualize the 6D pose by rendering the
3D CAD models and highlighting the contours on the right. Blue color denotes ground truth and green color denotes the
prediction from CheckerPose.



Figure 3: Qualitative results on the YCB-V dataset. For each image on the left, we visualize the 6D pose by rendering
the 3D CAD models and highlighting the contours on the right. Blue color denotes ground truth and green color denotes the
prediction from CheckerPose.



Figure 4: Visualization of keypoint localization. Each column visualizes the keypoint location results of ZebraPose [20],
GDR-Net [22], our method, and ground truth. While our network directly outputs the 2D locations, the results of other dense
methods [20, 22] are computed by projecting the keypoints using the estimated poses.

(a) Ground Truth (b) Prediction (c) Ground Truth (d) Prediction

Figure 5: Failure cases. We provide the localization results of eight keypoints that are inliers of the estimated poses.


