
Coherent Event Guided Low-Light Video Enhancement
(Supplementary Material)

Jinxiu Liang1,2 Yixin Yang1,2 Boyu Li1,2 Peiqi Duan1,2 Yong Xu3 Boxin Shi∗1,2
1 National Key Laboratory for Multimedia Information Processing, School of Computer Science, Peking University

2 National Engineering Research Center of Visual Technology, School of Computer Science, Peking University
3 School of Computer Science and Engineering, South China University of Technology

{cssherryliang, yangyixin93, liboyu, duanqi0001, shiboxin}@pku.edu.cn yxu@scut.edu.cn

Thorlabs CCM1-

BS013

DAVIS346

FLIR Chameleon 

3 Color

Figure 6. Hybrid camera system.

6. Details of the Hybrid Camera System

We build a hybrid camera system to evaluate the proposed
method for real-world scenarios. It consists of an event
camera DAVIS346 and an industrial RGB camera FLIR
Chameleon 3 Color, as shown in Figure 6. The two sensors
are connected via a Thorlabs CCM1-BS013 beam splitter
mounted in front of them. We perform a coarse geometric
alignment between them by using a checkerboard. Due to
the large modality gap and weakened features in low-light
frames, such an alignment is usually not precise. This issue
is further relieved by the proposed spatial coherence model-
ing module, which allows feature-level alignment between
events and low-light frames.
Camera parameter requirements It depends on the mo-
tion and lighting of the scenes. We assume that the exposure
time is chosen to mitigate any blurring effects while the ISO
is set to prevent the average intensity from being too low.
Detailed settings of visual results on real data are shown
in Table 4.

7. More Implementation Details

Following common practice in flow-based video restora-
tion [7, 11, 1, 22], the optical flow estimators FE

flow and

Table 4. Camera parameter requirements of the visual results.

Setting Fig. 1 Fig. 5 Fig. 7 Fig. 12 Fig. 13

Exposure time (ms) 10 0.3 0.63 0.15 20
ISO 200 200 200 200 200

Luminance (cd/m2) 1.4 160.7 234.9 385.0 0.6

FL
flow are initialized from pretrained models for events [4]

and frames [14], respectively. In particular, the parameters
of FL

flow are pre-trained on FlyingChairs [2] and FlyingTh-
ings3D [10], which are officially provided by PyTorch. The
parameters of FE

flow are pretrained on DSEC [3].
To compensate for the resolution gap and sensor misalign-

ment, the global coherence is estimated from multimodal co-
herence Cmodal by Fglobal from a projection matrix initialized
as an identity mapping. In particular, projected coordinates
are used to extract the correlation slice from multimodal co-
herence Cmodal similar to Eq. (8). The basic units of Fglobal
include a 3× 3 convolutional block, a group normalization +
ReLU, and a max-pooling layer with stride 2. They are used
to continuously downsample the input features until their
spatial resolution reaches 2× 2, which is then projected into
a 2× 2× 2 displacement cube D by a convolutional layer.

For more details, please refer to the code provided on our
project page1.

8. Additional Analysis
Comparison with stronger competitors. To demon-
strate the effectiveness of the proposed multimodal coher-
ence modeling module and the temporal coherence propa-
gation module, we compare the proposed method with four
stronger competitors built upon the state-of-the-art low-light
video enhancement methods SDSD [17] and MBLLEN [8],
event-guided frame interpolation method Time Lens [16],
and a low-light events-to-video reconstruction method DVS-
Dark [21].

1https://sherrycattt.github.io/EvLowLight
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Table 5. Quantitative comparison with stronger competitors on our synthetic
data with severe noise. ↑ (↓) means higher (lower) is better.

Method PSNR↑ SSIM↑ LPIPS↓

MBLLEN† [8] 20.81 0.7928 0.3403
SDSD† [17] 21.20 0.7280 0.3962

Time Lens† [16] 18.60 0.7106 0.3699
DVS-Dark† [21] 6.25 0.0507 0.8131

Ours 23.98 0.8369 0.2794

The inputs of SDSD [17] and MBLLEN [8] are multiple
frames that can benefit from interframe information provided
by an event camera. In particular, events are provided as
additional input through the additional sixth convolutional
layers, which share the architecture similar to [13]. The
generated features of events are resized and concatenated
with the input frames, which are then fused by a 3×1 convo-
lutional layer and fed to the main model of SDSD [17] and
MBLLEN [8]. All the layers are then trained end-to-end fol-
lowing their recommended settings. Time Lens [16] accepts
hybrid inputs of events and two adjacent frames of the target
to be predicted. We adjust its network architecture to take
in a low-light version of the target frame and its adjacent
low-light frames. DVS-Dark [21] are initially designed for
events-to-video reconstruction in the dark, relying solely on
event inputs. Its network architecture is modified to accept
additional frame inputs.

Quantitative results are shown in Table 5, where the com-
pared methods are denoted as SDSD†, MBLLEN†, Time
lens†, and DVS-Dark†, respectively. With additional inputs
of events, SDSD† and MBLLEN† perform better than their
vanilla version. The modified versions of Time Lens [16] and
DVS-Dark† to accept additional inputs of the corresponding
low-light versions of the target frame show about 5dB and
17dB drops compared to the proposed method in terms of
PSNR, due to inadequate noise-handling mechanisms in low-
light conditions. The proposed method performs the best
among all compared methods.
Computational cost. To compare the computational com-
plexity of some recently proposed deep learning-based meth-
ods and our method, we report floating point operations
(denoted by FLOPs) and the number of parameters (denoted
by #Params) in Table 6. FLOPs are computed by averaging
each method’s processing for 100 frames at a resolution of
640 × 480. The PSNR values are also provided for refer-
ence. It can be seen that our method performs the best with
moderate cost.

The proposed components – global feature alignment,
pixel-wise motion aggregation, temporal coherence propa-
gation, and exposure parameter estimation – constitute only
5.19%, 8.05%, 2.86%, and fewer than 0.01% of the total
parameters, respectively.
Robustness to sensor misalignment. To compensate

Table 6. Comparison of computational complexity. ↑ (↓) means higher
(lower) is better. The values of PSNR are also provided for reference.

Method PSNR↑ FLOPs↓ #Params↓

Pure event
DVS-Dark [21] 9.81 721.27 G 11.89 M
E2VID [12] 16.20 139.62 G 10.71 M

Image-based
SCI [9] 15.96 0.06 G 0.0003 M
Transformer [19] 15.81 112.30 G 39.12 M
URetinex-Net [18] 20.87 266.88 G 0.34 M

Video-based
MBLLEN [8] 17.77 210.34 G 0.12 M
SDSD [17] 12.60 214.44 G 4.30 M
StableLLVE [20] 19.37 47.21 G 4.32 M

Hybrid Ours 23.98 175.39 G 15.03 M

for the low resolution of events and let them match their
frames counterparts, hybrid frame-event camera systems are
often adopted in event guided image/video enhancement
tasks [6, 16, 15]. They could be optically colocated via
a beam splitter [6, 15] or put as close as possible side by
side [16]. As mentioned in the main text, aligning the two
sensors precisely is difficult. For example, the events and
frames shown in the first row of Figure 7 (c). When their
estimated homography parameters are directly applied to
data that capture a scene with different depths, there is still
misalignment between events and frames, as shown in the
third row of Figure 7 (c). Online registration for each scene
(with different depths and lighting variations) is necessary
to obtain stable results for hybrid camera systems [16, 15].
However, it becomes fragile under low light conditions, since
the features for computing homography are too weak to be
precisely extracted. Thanks to the proposed multimodal
coherence modeling module, the proposed method is robust
to misalignment between events and frames. As shown
in Figure 7 (d), the proposed method stably produces good
denoising results under aligned (the first row), misaligned
(the third row), and unaligned (the second and the fourth
row) settings.

Robustness to discontinuity of motion and lighting in-
consistency. The assumption of brightness constancy and
continuity of motion limits the performance of frame-based
optical flow. In this paper, we introduce the event camera for
capturing inter-frame motion in the order of microseconds
and brightness changes in a high dynamic range over 120
dB. For example, the cat’s head presented in Figure 8 (a)
becomes occluded in Figure 8 (c), whose motion between
frames is discontinuous. The cat basking in the sun in Fig-
ure 8 (a) becomes covered in the girl’s shadow in Figure 8
(c), whose brightnesses are inconsistent. Nevertheless, the
high temporal resolution and high dynamic range of events
essentially increase the robustness to deal with the disconti-
nuity of motion ((b) the cat’s head occluded) and the lighting
inconsistency ((c) the cat in shadow).



9. More Visual Comparison Results
We provide more visual comparisons on both synthetic

data and real data. The compared methods include (i)
image-based methods: LIME [5], SCI [9], Transformer [19],
URetinex-Net [18]; (ii) video-based methods: MBLLEN [8],
StableLLVE [20], and SDSD [17]; (iii) event-based restora-
tion methods: DVS-Dark [21] and E2VID [12]; (iv) methods
with hybrid inputs of events and frames: the aforementioned
stronger competitors built upon methods with multiple in-
put frames, i.e., MBLLEN† [8] and SDSD† [17], and the
proposed method. The results of all existing methods are pro-
duced by their officially released codes with recommended
parameter settings. LIME [5] is the state-of-the-art con-
ventional method, while the others are all learning-based
methods. Visual comparison results on synthetic data are
shown in Figure 9, Figure 10, and Figure 11, while results
on real data are shown in Figure 12 and Figure 13.

Please refer to the video on our project page2 for low-
light video enhancement results of different methods on
both synthetic and real data. The video results with more
recovered details and reduced noise compared to the other
methods demonstrate the effectiveness of the proposed tem-
poral propagation module for capturing redundancy between
consecutive frames.

DSEC [3] is a stereo event camera dataset for driving
scenarios containing several real samples of paired events
and frames captured at night. As shown in the first four
rows of Figure 14, the proposed method can recover details
of buildings and license plate numbers of fast-moving cars,
demonstrating its robustness in real complex scenarios.

Time Lens [16] proposes an event-guided frame interpo-
lation method and provides the corresponding real data pairs
of events and frames. Frames are captured with a fast shutter
speed, which makes them contain noise. To demonstrate the
robustness of the proposed method to normal-light images,
we provide the corresponding results on real data provided
in Time Lens [16] in the last two rows of Figure 14.

10. Qualitative Results of Ablation Studies
We compare the proposed method with its five variants to

validate the effectiveness and necessity of each component:
(i) w/o events: without event as additional inputs; (ii) w/o
Fspat: without the proposed spatial coherence modeling mod-
ule Fspat; (iii) w/o feature alignment: without the proposed
feature-level alignment described in Eq. (13) of the main
text; (iv) w/o Ftemp: without the proposed temporal coher-
ence propagation module Ftemp; (vi) w/o noise simulation:
without the proposed noise simulation process that considers
complex degradation in real-world scenarios.

We provide visual results in Figure 15 and Figure 16 cor-
responding to the quantitative results shown in Table 3 of

2https://sherrycattt.github.io/EvLowLight

the main text. We introduce the event camera, which can
extract precise temporal information but has quite a different
representation of visual scenes, to better utilize temporal
redundancy for video restoration and enhancement. In low-
light frames, features are weakened, and motion information
is hard to be estimated. As shown in Figure 15 (d), (e), and
(f), without the help of events or sophisticated alignment
schemes between the two sensors, oversmooth results are
produced, e.g., the textures of the tire disappear as shown in
the blue boxes in Figure 15 (d), (e), and (f). The proposed
temporal coherence propagation module Ftemp is used to
better extract and propagate temporal redundancy informa-
tion over time with the help of the event camera. Without
it, the noise reduction performance decreases, as shown in
the red boxes in Figure 16 (g). To develop a low-light video
enhancement method with better generalization ability in
complex real-world scenarios, we propose to use a more
practical degradation process for synthesizing data for train-
ing. Its effectiveness is validated in both Table 3 of the main
text and visual results in Figure 16 (h).
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(a) Low-light frame (b) Events (c) Overlaid frames (a) and event (b) (d) Ours

Figure 7. Visual comparison results with different degree of misalignment.
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(a) Low-light frame (b) Events (c) Ground Truth (d) Ours

Figure 8. Visual demonstration of the robustness of the proposed method to discontinuity of motion ((a) vs. (b), the cat’s head occluded) and lighting
inconsistency ((a) vs. (c), the cat in shadow).



(a) Low-light frame (b) Events (c) Ground truth

(d) DVS-Dark [21] (e) E2VID [12] (f) LIME [5] (g) Ours

(h) URetinex-Net [18] (i) Transformer [19] (j) SCI [9] (k) StableLLVE [20]

(l) MBLLEN [8] (m) SDSD [17] (n) MBLLEN† [8] (o) SDSD† [17]

Figure 9. Visual comparison results with state-of-the-art methods on synthetic data.



(a) Low-light frame (b) Events (c) Ground truth

(d) DVS-Dark [21] (e) E2VID [12] (f) LIME [5] (g) Ours

(h) URetinex-Net [18] (i) Transformer [19] (j) SCI [9] (k) StableLLVE [20]

(l) MBLLEN [8] (m) SDSD [17] (n) MBLLEN† [8] (o) SDSD† [17]

Figure 10. Visual comparison results with state-of-the-art methods on synthetic data.



(a) Low-light frame (b) Events (c) Ground truth

(d) DVS-Dark [21] (e) E2VID [12] (f) LIME [5] (g) Ours

(h) URetinex-Net [18] (i) Transformer [19] (j) SCI [9] (k) StableLLVE [20]

(l) MBLLEN [8] (m) SDSD [17] (n) MBLLEN† [8] (o) SDSD† [17]

Figure 11. Visual comparison results with state-of-the-art methods on synthetic data.



(a) Low-light frame (b) Events

(c) DVS-Dark [21] (d) E2VID [12] (e) LIME [5] (f) Ours

(g) URetinex-Net [18] (h) Transformer [19] (i) SCI [9] (j) StableLLVE [20]

(k) MBLLEN [8] (l) SDSD [17] (m) MBLLEN† [8] (n) SDSD† [17]

Figure 12. Visual comparison results with state-of-the-art methods on real data.



(a) Low-light frame (b) Events

(c) DVS-Dark [21] (d) E2VID [12] (e) LIME [5] (f) Ours

(g) URetinex-Net [18] (h) Transformer [19] (i) SCI [9] (j) StableLLVE [20]

(k) MBLLEN [8] (l) SDSD [17] (m) MBLLEN† [8] (n) SDSD† [17]

Figure 13. Visual comparison results with state-of-the-art methods on real data.



(a) Low-light frame (b) Events (c) Ours

Figure 14. Visual results on real data captured in DSEC [3] (the first four rows) and Time Lens [16] (the last two rows).



(a) Low-light frame (b) Events (c) Ground truth

(d) w/o Fspat (e) w/o events (f) w/o feature alignment

(g) w/o Ftemp (h) w/o noise simlulation (i) Ours

Figure 15. Qualitative comparison results on different cases of the ablation studies.



(a) Low-light frame (b) Events (c) Ground truth

(d) w/o Fspat (e) w/o events (f) w/o feature alignment

(g) w/o Ftemp (h) w/o noise simlulation (i) Ours

Figure 16. Qualitative comparison results on different cases of the ablation studies.


