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A. Additional SDF Regularizations

In addition to the Eikonal term [13] that is commonly
used for constraining the learned SDF field, neural sur-
face methods also require special weight initialization or
warm-up steps to stabilize the learning of implicit surfaces
[44, 39, 47]. However, unlike prior works that use a large
fully implicit MLP [44, 39] or attach spatial coordinates to
the grid-interpolated geometry features [47], ENVIDR’s ge-
ometry MLP uses an NGP-like [26] model that uses multi-
level hash encoding as the only input to the tiny geome-
try MLP. Therefore, the geometric initialization [2] that as-
sumes spatial coordinates as MLP inputs cannot be applied
to our model. Thus, our model requires new ways to initial-
ize its learned geometry to better represent continuous and
smooth surfaces.

To demonstrate the importance of incorporating special
constraints when learning implicit neural surfaces, we first
show the results of models that do not include additional
SDF constraints. Figure 11 shows the surface normals of
two such models, one trained solely with L1 photometric
loss (“L1”) and the other with L1 loss and Eikonal term
(“L1+Eikonal”). Both of these models fail to capture ac-
curate surface geometry on glossy regions, and their corre-
sponding SDF curves oscillate around the zero-level SDF,
which results in a compositing weight wi (obtained from
Eqn. 2) distribution with multiple peaks along the ray.
These scattered compositing weights further cause the re-
constructed surface to “collapse” into the actual object. To
avoid this surface collapse, additional regularizations are
needed on the initial SDF predictions.

In this work, we employ two SDF regularization terms in
the early training steps to stabilize the learning of the initial
SDF. The first regularization term is to force the SDF pre-
dictions of positions inside object surfaces to be away from
zero-level SDF, which can suppress the multiple peaks on
the compositing weight curves. To avoid over-suppression
of the existing SDF predictions that are far away from the
zero-level SDF, we employ a modified Cauchy loss [16] on
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Figure 11: The normals of the surfaces learned by models
without additional constraints. The results are from models
after only 20k training iterations. We also plot the curves
of SDF and compositing weight wi of the sampled points
along the ray for rendering the pixel shown on the left.

the SDF-converted (via Eqn. 1) density values σi:
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where β is the parameter used in Eqn. 1 and c is a hyperpa-
rameter that controls the loss scale which we set to 4. This
regularization term is uniformly applied to all the sampled
N points per iteration. The effectiveness of this regular-
ization is shown in Figure 12a. Compared to the results in
Figure 11, Ln is able to help our model to get a better initial
surface structure.

The second regularization is to eliminate the fluctuations
of SDF curve segments that are close to zero-level SDF. The
zero level set of SDF denotes the actual position of the sur-
face, and frequent fluctuations near the surface can signifi-
cantly impact the quality of surface geometry as well as sur-



(a) Ln Only (b) Lb Only (c) Ln + Lb (d) 200k iter.

Figure 12: The estimated surface normal with our regular-
ization terms. (a-c) show the results after 20k iterations, and
(d) shows the results of the model with our full regulariza-
tions after 200k training iterations (Ln & Lb stop at 40k).

face normals. To ensure that our estimated SDF has a sta-
ble decreasing curve when it hits the surface at ray-sampled
points, we propose a back-face suppression regularization.
This regularization penalizes SDF curve segments with pos-
itive slopes and high corresponding compositing weights, as
shown in the following equation:

Lb =
∑
i

wi max(∆si, 0)
∆si

δ2i +∆s2i
(16)

In this equation, ∆si = s(xi+1)− s(xi) represents the dif-
ference in estimated SDF between two adjacent sampled
points xi and xi+1, δi is the actual distance between xi

and xi+1. The compositing weight wi for volume rendering
can be obtained from Equation 2. Figure 12b demonstrates
the effectiveness of this regularization term. We can ob-
serve that the smoother estimated surface is achieved with
the same number of training iterations compared to the re-
sults obtained using only Ln. However, it should be noted
that the object’s surface shrinks slightly compared to the
other results.

By combining the two regularization terms introduced
above, we are able to achieve a more stable and accurate
SDF estimation. Specifically, we formulate the combination
of the two regularization terms as:

Lreg = λnLn + λbLb (17)

where λn and λb are weight hyperparameters. Setting
overly large values of λn and λb may prohibit the model
from learning fine-grained geometry details. However, they
can be beneficial in providing smooth surfaces for the later
training steps. The effectiveness of the combined regular-
ization can be seen in Figure 12c. By using these additional
SDF regularizations during the early training steps, we can
produce much better initial surfaces for accurate reconstruc-
tion and illumination.

B. Implementation Details
Architecture and hyperparameters. The geometry MLP
Fg used in ENVIDR is similar to Instant-NGP [26]. We em-
ploy a hash encoding with 16 grid levels where each level
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Figure 13: Additional relighting results for various scenes. Due
to the unavailability of Blender files for these objects, reference
relighting images are not provided for comparison. NVDIFFREC
and NVDIFFRECMC are rendered by Blender Cycles.
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Figure 14: The model structure for general scenes. Com-
pared to the structure for sphere rendering, 1) the specu-
lar and diffuse MLPs are pre-trained and their weights are
frozen after pre-training; 2) material attributes are implic-
itly learned by SDF MLP, instead of as model inputs.

encodes a 2-d feature vector. The MLP Fg itself is a tiny
3-layer MLP with 64 neurons per hidden layer. The output
geometry feature fgeo is a 12-d feature vector. The environ-
ment MLP E is a relatively large MLP with 4 layers and
256 neurons per layer (still smaller than a 1k HDR light
probe image). The integrated directional encoding (IDE)
[36] utilized by E encodes unit directions using the first 5
bands of spherical harmonics. The output environment fea-
ture fenv is also a 12-d feature vector. Specular MLP Rs is
a 3-layer MLP with 64 neurons per hidden layer, while Dif-
fuse MLP Rd is a 2-layer MLP with 32 neurons per hidden
layer. We implemented our model using a PyTorch version
of Instant-NGP 1.
Training details. For the neural renderer’s training (Fig. 3),
we use Filament PBR engine [30] to randomly synthesize
new frames on the fly, with varying materials and environ-
ment lights (we use only 11 light probe images, collected
by Filament 2). We train the neural renderer for 100k it-
erations, each with 32000 sampled rays, using the Adam
optimizer with an initial learning rate of 0.001. This train-
ing takes about 3 hours on a single RTX3090 GPU. For the
training of representing general scenes (Fig. 14), we train
our model for 200k iterations with 4096 sampled rays per
iteration, using the Adam optimizer with an initial learn-
ing rate of 0.0005. We first train the model only with a
photometric loss for 4k iterations to obtain a coarse geom-
etry for ray-sampling acceleration. We then apply our ad-
ditional SDF regularizations for about 40k iterations with
exponentially decaying loss weights. The Eikonal loss term
is added to the training after the first 10k training iterations.
If the indirect illumination module is used, we initiate the
extra raymarching pass after the first 40k training iterations.
The training speed depends on the complexity of the tar-

1https://github.com/ashawkey/torch-ngp
2https://github.com/google/filament/tree/main/

third_party/environments

get scene, but most scenes can be trained within 3 hours (5
hours if indirect illumination is used) on RTX3090.
Runtime. The time required to render a single 800×800
image is approximately between 0.5 to 1.2 seconds (with-
out indirect illumination) on a single RTX3090 GPU. If the
indirect illumination pass is enabled, rendering may take 1.6
times longer. Although our code base is not yet optimized
for runtime performance, further optimizations are possible
to achieve faster rendering.

C. Additional Results
In this section, we present additional experimental re-

sults to demonstrate ENVIDR’s ability to reconstruct and
render glossy surfaces. We also provide a demo video on
our web page to showcase results in motion.

C.1. The Generalizability of Neural Renderer

The current implicit neural surface models [39, 44, 42]
usually have a similar model structure with an SDF MLP
for geometry learning and a color MLP for rendering. Since
the color rendering part is relatively independent of the de-
sign of the geometry learning model, therefore, our neural
renderer with the same pre-trained weights can also be inte-
grated with different neural surface models to achieve sim-
ilar rendering results, as illustrated in Fig. 15.

VolSDF NeuS NGP-SDF (default)

Figure 15: The rendering and relighting results of our neu-
ral renderer combined with different geometry MLP back-
bones. VolSDF and NeuS use their original SDF MLPs,
NGP-SDF is our default model described in the paper.

C.2. Additional Comparisons

In the main paper, our comparison does not include some
previous inverse rendering methods based on neural fields
such as NeRD [6] and Neural-PIL [7]. This is because we
find these methods usually fail to capture high-frequency
reflections and have lower rendering quality. They are also
more expensive to run (e.g., over 24 hours of training per
scene). Fig. 16 shows our additional comparison.

C.3. The Rotation of Environment Lighting

Since our model is able to decompose the environment
illumination from the training images. To demonstrate the
correctness of the decomposition and versatility of our neu-
ral renderer, we further show the results of rendering scenes
with a rotating environment. Suppose we want to apply a

https://github.com/ashawkey/torch-ngp
https://github.com/google/filament/tree/main/third_party/environments
https://github.com/google/filament/tree/main/third_party/environments
https://nexuslrf.github.io/ENVIDR/


NeRD Neural-PIL NVDIFFREC Ours

Figure 16: The comparison of inverse rendering results.
Both novel view synthesis (lower right) and scene relight-
ing (upper left) are shown. The lower part shows the light
probes estimated by corresponding methods. Neither NeRD
nor Neural-PIL captures the high-frequency details from the
environment lighting.

rotation R ∈ SO(3) to the environment map, we can sim-
ply use the rotated directional vectors ω̂r

′ = R−1ω̂r as
MLP inputs. The visual results in Fig. 17 show that our
model also enables high quality rendering without flicker-
ing on rotating environments.

C.4. Additional Relighting

Additional relighting results on challenging synthetic
shiny scenes are demonstrated in Figure 13. ENVIDR is ca-
pable of synthesizing lighting effects that are comparable to
Blender’s path-tracing rendering. while maintaining signifi-
cantly better surface geometry compared to the two baseline
models. However, these relighting results also reveal some
limitations of our method. For instance, in the “teapot” ex-
ample, our current method cannot synthesize shadowing ef-
fects caused by surface occlusions. We plan to address this
in our future work.

C.5. Per-Scene Decompositions

Figure 17 shows the rendering decomposition of all eval-
uated synthetic scenes. ENVIDR can effectively decom-
pose both the view-independent diffuse color and view-
dependent specular color from multiview training images.
Moreover, it can successfully distinguish between different
types of materials present in the scene, such as metallic ma-
terials in the ”toaster” and ”coffee” scenes. In addition, our
model also captures high-fidelity environment light probes
from these shiny objects.
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Figure 17: Our decompositions. In the “Probes” column, the upper row shows the reference, and the lower row shows our estimation.


