
Logic-induced Diagnostic Reasoning for Semi-supervised Semantic Segmentation
Supplemental Material

Chen Liang, Wenguan Wang, Jiaxu Miao, Yi Yang*

ReLER, CCAI, Zhejiang University

https://github.com/leonnnop/LogicDiag

• §S1: Detailed introduction of First-order Logic.

• §S2: Detailed LOGICDIAG algorithm.

• §S3: Detailed label hierarchy.

• §S4: More experimental results.

• §S5: More qualitative visualization.

• §S6: Discussion of legal/ethical considerations.

S1. Detailed Introduction of First-order Logic
First-order logic (FOL), also known as predicate logic, is

a formal language system used for representing and reason-

ing about statements involving objects and their properties.

FOL extends propositional logic by introducing predicates,

which are functions that take one or more arguments and

return a truth value. The syntax of FOL is defined by a set

of symbols, including variables, constants, function sym-

bols, predicate symbols, and logical connectives. The basic

components of FOL are (please also refer to §3.2.1):

• Constants: Objects that are always present and have a

fixed interpretation. For example, a specific pixel xi.

• Variables: Symbols that represent objects whose identity

is not specified. For example, pixel data sample x.

• Quantifiers: Symbols that specify the extent of a state-

ment’s applicability, either ‘for all’ (∀) or ‘there exists’ (∃).

• Connectives: Symbols that combine statements to form

more complex ones, e.g., negation (¬), conjunction (∧), dis-

junction (∨), implication (→), and biconditional (↔).

• Predicates: Expressions that assert a relationship between

objects. For example, Cat(x): x is a Cat.

In FOL, a formula is formed by combining atomic for-

mulas using logical connectives and quantifiers. An atomic

formula is typically a predicate applied to a set of terms,

and takes the form P (t1, . . . , tn), where P is a predicate

symbol of arity n and t1, . . . , tn are terms, which may be

variables, constants, or function symbols applied to terms.

The semantics of FOL are determined by a truth function

that assigns a truth value to each formula based on the val-

ues of its subformulas and the domain of discourse. As an
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Algorithm 1 LOGICDIAG Pseudocode, PyTorch-like style

# H: neural network predictor
# K: knowledge base of first-order logic rules
# L: loss function, e.g., binary cross entropy loss
# m: trade-off hyperparameter

# load minibatch from labeled and unlabeled dataset
# s_x, u_x: labeled and unlabeled datapoints
# o_s: ground-truth labels
for (s_x, o_s), u_x in loader:

# Pose assumptions on observations
p_s_o = H(s_x).sigmoid() # supervised prediction
p_u_o = H(u_x).sigmoid() # unsupervised

prediction

loss_s = L(p_s_o, o_s) # supervised loss

p_o = CONCAT([p_s_o, p_u_o])
o = p_o.binarize() # original pseudo label

# Compute diagnoses (Eq.4-5)
Omega = DIAGNOSE(o, K)

# Calculate diagnosis likelihood (Eq.7,8,11)
p_Omega = FUZZY_LIKELIHOOD(Omega, p_o, K)
omega = SAMPLING(p_Omega) # sample from

likelihood

# Resolve conflicts within pseudo labels (Eq.6)
o_r = RESOLUTION(o, omega)

# Calculate unsupervised loss on revised labels
loss_u = L(p_o, o_r)

# Calculate overall training objective (Eq.3)
loss = loss_s + m*loss_u

# Update the sub-symbolic network parameters
loss.backward()
update(H.params)

example, in our main paper, we define a unary predicate t(·)
that takes a single input o and evaluates whether o is logi-

cally consistent with the symbolic knowledge. The truth

value of a formula of the form ∀o, t(o) is true if and only if

t(o) is true for all objects in the domain of discourse.

S2. Detailed LOGICDIAG Algorithm
Algorithm 1 provides the pseudocode for LOGICDIAG.

By integrating symbolic reasoning into the neural learn-

ing process, LOGICDIAG enhances the model’s ability to
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Figure S1: Pseudo labels obtained with confidence thresholding

(middle) and LOGICDIAG (right). There are two key limitations

associated with confidence thresholding. (a) Confidence thresh-

olding is not able to rectify potentially incorrect predictions, lead-

ing to the generation of inaccurate pseudo-labels. For example,

as shown in the second column, the error accumulation ultimately

leads to the misclassification of sheep as a cow; (b) The typically

high threshold used in confidence thresholding results in a signifi-

cant reduction in the number of generated pseudo-labels.

align with background knowledge, correct conflicting pre-

dictions, and improves its predictive accuracy in SSL tasks.

S3. Detailed Label Hierarchy
In this paper, we leverage the label hierarchy present in

each dataset to derive the logic rules. To this end, we lever-

age the official structured label hierarchies for the PASCAL

VOC 20121 [1], Cityscapes2 [2], and COCO3 [3] datasets.

To represent the most general concept, we introduce a vir-

tual root node labeled Root. The detailed hierarchies for

PASCAL VOC 2012, Cityscapes, and COCO are illustrated

in Fig. S3, Fig. S4, and Fig. S5, respectively.

S4. More Experimental Results
Semantics of Label Hierarchy. We further examine the

impact of hierarchical structure, which is used in deriving

the Composition, Decomposition, and Exclusion rules of

visual concepts. By default, we use the official label hi-

erarchies defined in PASCAL VOC 2012, Cityscapes, and

1http://host.robots.ox.ac.uk/pascal/VOC/
2https://www.cityscapes-dataset.com/

dataset-overview/
3https://github.com/nightrome/cocostuff
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Figure S2: Pseudo labels before and after logic-induced diagnos-

tic reasoning across training iterations.

COCO (c.f. §S3). We additionally explore an alternative

where a random hierarchy was constructed with the same

number of superclasses and classes per superclass as the of-

ficial hierarchy. The results are presented in the table below.

For completeness, we also include the baseline without em-

ploying our framework. Our findings indicate that when

using the randomly constructed hierarchy, the achieved re-

sults are only comparable or even slightly worse than the

baseline, due to the presence of noisy supervision. This re-

sult again shows that the structured semantic concepts and

derived set of logic rules are indeed helpful in the semi-

supervised learning of semantic segmentation models.

Label Hierarchy mIoU2 mIoU1

None - 68.02

Random 76.13 67.11

Official 87.91 73.25

Table S1: Impact of semantics within label hierarchy, evaluated

on PASCAL VOC 2012 [1] val with 1/16 augmented set.

S5. More Qualitative Visualization

Pseudo-label Quality. In Fig. S1, we present the visualiza-

tion that compares the pseudo labels generated by our LOG-

ICDIAG with those obtained through the confidence thresh-

olding method. Our visualization highlights two key advan-

tages of LOGICDIAG. First, as demonstrated in Fig. S1 (a),

the integration of conflict resolution mechanism enables

LOGICDIAG to rectify possibly erroneous predictions, lead-

ing to more precise and cohesive pseudo-labels that align

with the existing knowledge. Second, Fig. S1 (b) illustrates

that the confidence thresholding method generates signif-

icantly fewer pseudo-labels compared to the LOGICDIAG

framework. This limitation, in turn, hinders the effective-

ness of semi-supervised learning process, which relies on

large amounts of high-quality pseudo-labeled data.

Diagnostic Reasoning. To further depict the effect of logic-

induced diagnostic reasoning, we illustrate the process w.r.t.



training iterations on one typical example in Fig. S2. Ini-

tially (30% training), a substantial portion of the pseudo la-

bels undergo revisions based on label hierarchy, resulting in

improved accuracy. As training progresses (60% training),

the revised pseudo labels become more accurate, requiring

fewer modifications. This demonstrates LOGICDIAG’s effi-

cacy in refining and enhancing pseudo labels iteratively.

Qualitative Results. We illustrate representative qualita-

tive results of our method and confidence thresholding upon

the DeepLabV3+ [4], on the PASCAL VOC [1] (Fig. S6),

and Cityscapes [2] (Fig. S7). It is evident that LOGICDIAG

produces more accurate predictions attributed to the suc-

cessful incorporation of symbolic visual semantics, which

helps to resolve ambiguous classes and subtle textures that

often cause confusion for the baselines.

S6. Discussion
Asset License and Consent. In this work, we study the

semi-supervised semantic segmentation problem with three

famous semantic segmentation datasets, i.e., PASCAL VOC

2012 [1], Cityscapes [2], and COCO [3] that are all publicly

and freely available for academic purposes. All these as-

sets release annotations obtained from human experts with

agreements. PASCAL VOC 2012 (https://groups.
csail.mit.edu/vision/datasets/ADE20K/) is

released under the Flickr Terms of use for images and

CC BY 4.0 for annotations; Cityscapes (https://www.
cityscapes-dataset.com/) is released under this

License; COCO (https://cocodataset.org/) is

released under CC BY 4.0 license. We implement all the

variants of LOGICDIAG with modifications on the MM-

Segmentation [5] codebase (https://github.com/
open-mmlab/mmsegmentation), which is released

under the Apache-2.0 license.

Limitation Analysis. As a very first attempt that demon-

strates the power of neural-symbolic computation in large-

scale semi-supervised semantic segmentation, our approach

inevitably introduces some open problems that need to be

acknowledged. In particular, the Monte Carlo approxima-

tion (§3.2.2) employed in our approach requires repeated

sampling from the probability distribution of interest. It can

be inefficient in terms of computational cost. However, we

have found that optimizing with only one sample per data-

point is sufficient for achieving global convergence, and this

incurs only a minor computational overhead, i.e., ∼4.7%
training speed delay. Moving forward, we are committed

to designing more powerful algorithms that can further im-

prove both the efficiency and efficacy of our approach.

Broader Impact. This work introduces a neural-symbolic

framework that not only achieves promising results in terms

of model performance, but also enhances the understand-

ability of the pseudo-label generating process. One advan-

tage of this approach is its ability to reduce human labor

and energy consumption in the semi-supervised training of

segmentation models. The potential real-world applications

are broad and varied, including precision agriculture, robot

navigation, etc. However, one potential drawback of the ap-

proach is that the generated results could be misused for

malicious purposes, such as identifying minority groups.

While this issue falls outside the scope of this paper, we

plan to release our models in a gated manner to ensure that

they are not used for anything beyond academic research.
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Figure S3: Official label hierarchy of PASCAL VOC 2012 [1].

Please check more details at http://host.robots.ox.ac.
uk/pascal/VOC/.

Figure S4: Official label hierarchy of Cityscapes [2]. Please find

more details at https://www.cityscapes-dataset.
com/dataset-overview/.



Figure S5: Official label hierarchy of COCO [3]. Please find more details at https://cocodataset.org/.



Figure S6: Qualitative results (§S5) obtained from confidence thresholding (left) and LOGICDIAG (right) methods with

DeepLabV3+ [4] as the basic segmentation architecture on PASCAL VOC 2012 [1].



Figure S7: Qualitative results (§S5) obtained from confidence thresholding (left) and LOGICDIAG (right) methods with

DeepLabV3+ [4] as the basic segmentation architecture on Cityscapes [2].


