
A. Supplementary

This supplementary material contains the source code for
networks, more ablation studies, and more visualizations
for the affordance heatmaps. All ablations are based on the
split of pushing actions and trained categories as in [7, 10].

A.1. Details for Model Design

We present all the details for the network designs of ev-
ery module in MAAL, as shown in Fig. 1 and Fig 2. The
dimension of all features z, a, and q is 128. According to
the intermediate fusion strategies as in [11, 6, 2], our net-
work design involves both multi-modal fusion and multi-
level fusion. These fully consider the multi-modal inputs
and provide better learning ability for solving the 3D object
affordance problem.

A.2. Ablation Study for Model Design

We provide ablations for different designations of mod-
ules in MAAL, as shown in Tab 1. First, the BN layer is
valuable for fusing features. Only with the object learner,
MAAL with BN layers achieves 3.85% improvements than
MAAL without BN layers in F-score as in Tab 1. This re-
veals the effectiveness of the BN layers in our network de-
sign, which normalizes different distributions [8] and em-
powers better learning ability for the networks [1, 4]. Then,
in the interact learner, MAAL applies the bilinear oper-
ation [5, 12] to fuse zo and za. We change the bilin-
ear layer to a concatenate operation with a fully-connected
layer (Concat + FC), a concatenate operation with batch
normalization (Concat + BN), and a cross-attention layer
(Cross attention) as in [9], respectively. In experiments,
our method with a bilinear layer achieves higher perfor-
mance. The cross-attention layer obtains a comparable per-
formance, but the results are slightly lower than ours. Thus,
we apply the bilinear layer in MAAL.

Moreover, we further evaluate the interact learner with-
out multi-level fusion. This indicates that the features ag-
gregated and learned from fo′ , fp, fa, and fh are not con-
sidered in the interact learner. In this condition, the result
of F-score decrease to 6.88%, which indicates the fusion of
multi-level features is effective as in [6]. Besides, the effec-
tiveness of residual block in the interact learner can be also
reflected in Tab. 1. The interact learner with residual block
obtains the better performance. The residual block supports
the interact learner to achieve better learning ability for 3D
object affordance.

Furthermore, we also test MAAL without using adapters,
introducing three independent action encoding modules in
MAAL, and MAAL decoder without given object informa-
tion. All results in Tab. 1 show the effectiveness of our net-
work designs.

A.3. Ablation Study for Memory Module

The memory module aims to record patterns of action
features. The memory number N influences the ability of
the memory as in [3]. In this part, we conduct experiments
for different memory numbers shown in Tab. 2. Generally,
a larger memory size leads to better performance. However,
larger memory also introduces more learnable parameters
and more computational costs. In our work, we set N =
200 since further enlarging the memory size brings only a
few improvements.

Moreover, we also evaluate MAAL without the mem-
ory module, in which the decoder reconstructs actions di-
rectly from the queries. Compared with our MAAL, which
achieves a 76.63 F-score in pushing action, the performance
of MAAL without the memory module decreases by 8.82%.
This reveals that the memory module is valuable in learning
3D object affordance.

A.4. Experiments on Other Datasets

More than PartNet-Mobility, we experiment with addi-
tional datasets, including VAT-Mart and GAPartNet) as in
Tab. 3. We present Sample-Succ results for the door cate-
gory. For pushing actions, MAAL shows improvements of
2.58% and 4.02% over the baselines, further indicating its
generalization ability.

A.5. Experiments on Other Baselines

We conduct experiments with VAT-Mart and UMPNet,
as shown in Tab. 4. We present the results for Pushing All
and Pulling All (train cat.). Our method outperforms all
other baseline in experiments. For Pushing All, compared
with VAT-Mart and UMPNet, our MAAL achieves better
performances with 20.8% and 16.61% gains of F-score, re-
spectively.

A.6. Visualization for the Predicted Actionability
Heatmap

We provide more visualizations for the affordance
heatmaps of MAAL, as shown in Fig. 3, for pulling ac-
tion and pushing action, respectively. All results further
prove the effectiveness of MAAL in learning 3D object af-
fordance.

A.7. Visualization for Interactions

We display visualizations with the gripper in Fig. 4.,
highlighting the gripper directions. All results show that
MAAL correctly predict the interactable points and corre-
sponding gripper directions for the robots.
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Figure 1. Structures of networks in MAAL. FC, ReLU, Concat, and BN denote the fully-connected layer, ReLU operation, concatenate
operation, and batch normalization, respectively. fo′ indicates the embedded feature by embedding layer for fo. Feature z is the output
from the corresponding learner. ⊣ indicates the feature outputs from adapters.

Method F-score (%) Sample-Succ (%)

Variations of MME

Object Learner only 32.47 13.54
Object Learner only w/o BN 28.62 10.95
Interact Learner only 58.74 24.01
Interact Learner only (Concat + FC) 54.07 20.47
Interact Learner only (Concat + BN) 49.64 13.48
Interact Learner only (Cross attention) 58.65 23.34
Interact Learner only w/o multi-level fusion 51.86 17.07
Interact Learner only w/o residual block 53.90 19.25

w/o Adapters MAAL w/o Adapters 74.56 34.08

Variations of Action Encoding Module MAAL w/ independent Action Encoding Module 76.82 33.20
Action Encoding Module w/o (fo and xp) 54.91 19.20

Table 1. Ablation of different network designs in MAAL.

Dataset N=100 N=200 N=500 N=1000 N=2000
pushing (train cat.) 74.63 76.63 76.64 76.87 77.07
pushing (test cat.) 62.19 69.88 69.82 69.83 69.82
pulling (train cat.) 56.64 59.26 59.22 59.32 59.34
pulling (test cat.) 41.59 43.57 43.77 43.71 43.75

Table 2. Ablation study for the memory size N . Larger memory
usually leads to better performances but also introduces computa-
tional costs. We set N = 200 in our works. Memory numbers
larger than 200 do not lead to significant improvements.

Dataset Where2Act Ours
VAT-Mart Dataset (pushing door) 32.67 36.66
VAT-Mart Dataset (pulling door) 6.02 8.83
GAPartNet (pushing door) 24.08 28.10

Table 3. Comparison of different datasets.

Method Pushing All Pulling All
F-score (%) Sample-Succ (%) F-score (%) Sample-Succ (%)

VAT-Mart 55.83 20.15 50.25 19.46
UMPNet 60.02 26.30 54.70 21.14
Ours 76.63 34.25 69.88 28.34

Table 4. Comparison of different baselines.
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Figure 2. Structures of the interact learner in MMA. Bilinear de-
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Figure 3. More visualizations for the affordance heatmap.

Figure 4. Visualization of predicted interaction.
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