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1. Supplemental Material

1.1. Overview

In this document, we provide the following supplemen-
tary content:

• Details of justification for rectangling (Section 1.2).

• Details of the dataset construction (Section 1.3).

• More qualitative results of the comparison methods
and our approach (Section 1.4).

• More vision perception results (Section 1.5).

• More cross-domain evaluation results (Section 1.6).

• User study (Section 1.7).

1.2. Justification for Rectangling

In the main manuscript, we have demonstrated that our
rectangling method can significantly facilitate the down-
stream vision tasks, improving the performance of object
detection and semantic segmentation. Besides the benefits
of vision tasks, we argue there are other reasons why the
rectangling algorithm is worth investigating. First, rectan-
gling allows a visually pleasant structure for humans and
a normal format for devices. Previous literature [3, 4] re-
vealed most users prefer rectangular boundaries for publish-
ing, sharing, and printing photos. For example, over 99%
images in the tag “panorama” on Flickr (flickr.com) have
rectangular boundaries. And human vision system is more
sensitive to irregular lines. Moreover, the rectangular image
well fits the mainstream display window and screen. In-
stead, the blank region in a nonrectangular image occupies
invalid space, which makes the data storage/compression
inefficient.

*Corresponding author. †The first two authors contribute equally.

1.3. Details of the Dataset Construction

We construct a rectangling rectification dataset that sev-
ering the first dataset in the research region, and we
would like to release it to promote the research develop-
ment. In particular, our dataset is built using the follow-
ing four steps: (i) Wide-angle image and rectified im-
age synthesis. Since it is extremely challenging to col-
lect large-scale paired wide-angle images and their recti-
fied ground truth, we follow the existing distortion rec-
tification approaches [11, 1, 14, 9, 13] to synthesize the
dataset. First, the original images are collected from the
MS-COCO dataset [10]. We leverage a 4th order polyno-
mial model to approximate the radial distortion of the wide-
angle image, which is verified to meet most projection mod-
els with high accuracy. To be specific, four distortion pa-
rameters are randomly generated from the following ranges:
k1 ∈ [−1×10−4,−1×10−8], k2 ∈ [1×10−12, 1×10−8] or
∈ [−1×10−8,−1×10−12], k3 ∈ [1×10−16, 1×10−12] or ∈
[−1×10−12,−1×10−16], and k4 ∈ [1×10−20, 1×10−16]
or ∈ [−1 × 10−16,−1 × 10−20]. Then we perform the
distortion rectification on the wide-angle image and obtain
the rectified images. (ii) Rectangling the rectified image.
Formulating an accurate transformation model for rectan-
gling the rectified image is difficult due to its non-linear
and non-rigid characteristics. We notice that there is a clas-
sical panoramic image rectangling technique He et al. [3]
on computer graphics, it makes the stitched image regular
by optimizing an energy function with line-preserving mesh
deformation. Thus, we perform the same energy function
on our rectified image dataset to fit the rectangling rectifica-
tion task. However, the capability to preserve linear struc-
tures in He et al. [3] is limited by line detection. Conse-
quently, some rectangling rectified images have nonnegli-
gible distortions. To overcome this issue, we carefully fil-
ter all rectangling results and repeat the selection process
three times, resulting in 5,160 training data from 30,000
source images and 500 test data from 2,000 source images.
Each manual operation takes around 10s. The size of all



Rectified Image Cropped Image RecRecNet He et al.Wide-angle Image Rectified Image Cropped Image RecRecNet He et al.Wide-angle Image

Figure 1. More qualitative results compared to He et al. [3]. We show the wide-angle image, rectified image, cropped rectified image, and
the rectangling result of our RecRecNet, as well as the rectangling result by He et al. [3] from left to right.

images is 256 × 256. (iii) Cross-domain validation. In
addition to the synthesized dataset, we collect 300 rectified
wide-angle image results from the state-of-the-art rectifica-
tion methods [8, 13]. Their results are derived from other
types of datasets and real-world wide-angle lenses such as
the Rokinon 8mm Cine Lens, Opteka 6.5mm Lens, and Go-
Pro. (iv) DoF-based curriculum dataset. To relieve the
challenge of the structure approximation in the rectangling
task, we proposed a Degree of Freedom (DoF)-based cur-
riculum learning. Specifically, three curriculum stages are
leveraged to inspire our RecRecNet, namely, from similar-
ity transformation (4-DoF) to homography transformation
(8-DoF), and to rectangling transformation. Thus, we also
construct two datasets (4-DoF dataset and 8-DoF dataset) to
provide the basic transformation knowledge, in which each
dataset contains 5,000 image pairs. For the transformation
synthesis, we randomly perturb four corners of the original
image and warp it to the target image following the previous
work [2].

1.4. More Qualitative Comparison Results

As shown in Figure 1, we exhibit more qualitative com-
parison results. Our RecRecNet is capable of rectangling
the rectified wide-angle image in various scenes. We can
observe the deformed boundary is straightened and the im-
age content is rearranged to keep undistorted by RecRec-
Net, contributing a win-win rectification representation for
the wide-angle image. By contrast, previous methods fail to
trade off the image boundary and image content in the rec-
tified image. Their results usually show incomplete content
or distorted distributions. For example, some rectangling
results produced by He et al. [3] rotate the original scene
and twist the object due to their line-preserving mesh defor-
mation.

1.5. More Vision Perception Results

As illustrated in Figure 2, we show more vision per-
ception results, including the object detection and seman-
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Figure 2. More detection and segmentation results by Mask R-CNN [5]. We show the rectified wide-angle image and its vision perception
result, and our rectangling result and its vision perception result, from top to bottom.
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Figure 3. Failure case of Mask R-CNN [5] in regards to the missing
perception. We find that the deformed boundary can introduce
new features to the original feature maps. As a result, the network
cannot recognize the elephant near the deformed image boundary
as the original features are blinded in the deep feature maps.

tic segmentation results, which are derived by the popular
perception model Mask R-CNN [5]. As we can observe,
the learning model is misled by the deformed structure in
the original rectified image, leading to wrong perception
and missing perception results. As a benefit of the pro-
posed flexible TPS transformation module and DoF-based
curriculum learning, our RecRecNet can significantly help
the downstream vision tasks by eliminating the deformed

boundary issue. And the perception performance is recov-
ered especially near the image boundary. For the perfor-
mance degradation in rectified images, one straightforward
reason is that the perception model has never seen the data
with a deformed image boundary during training, and the
domain gap between test data and training data confuses
it on rectified images. Nevertheless, we would like to ex-
plore deeper reasons and disclose why the deformed geom-
etry makes the vision perception deformed.

A sample is shown in Figure 3 to visualize why the de-
formed image boundary makes the perception deformed.
As described in the main manuscript, we found the de-
formed boundary can introduce new features onto the fea-
ture maps, which (i) form new semantics (leads to the wrong
perception) or (ii) cause blind spots for original features
(leads to missing perception). The noticeable line artifacts
and curve artifacts can be observed at the outermost bound-
aries and deformed boundaries respectively in shallow fea-
ture maps. In particular, the line artifacts are essentially
generated by zero padding. Zero padding is a fundamental
component of prominent CNNs architectures, it serves to
maintain the size of the feature maps across the network
by adding zero values to the feature map. When a con-
volutional kernel extracts the feature at the boundary with
zero padding, the sharp transitions between the zero values
and the original content are wrongly identified as an edge.
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Figure 4. More results for the cross-domain evaluation. We show the wide-angle image, rectified image, predicted mesh, and rectangling
result of our RecRecNet from top to bottom.
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Figure 5. User study for the rectangling rectification results.

Compared to the regular image, the rectified image allows
a faster extension of the edge effect. Thus, more new fea-
tures will be involved in the inference process. We call it a
dual-edge extension effect.

Recent works also demonstrated that the zero padding
can unintentionally leak the positional information in CNNs
[6, 7, 12]. In the case of the rectified image with a deformed
boundary, we reason that the original positional information
could be disturbed by the introduced new features. As a re-
sult, the perception model cannot build an accurate spatial
distribution and fails to understand the relationships among
adjacent semantics. Furthermore, it is interesting to find
that the new semantic features introduced by the deformed
boundary are jointly understood with their near features. In
other words, the neural networks perceive the object rela-
tion and the scene context.

For the missing perception case, if the features near
the boundary are non-salient, the newly introduced features
can cover them and generate blind spots for the perception
model. As a result, the network cannot recognize the ele-

phant near the deformed image boundary. We argue that
such an effect can raise in most image transformation cases
such as image warping, in which the boundaries are de-
formed to trade off different requirements on image content.

1.6. More Cross-Domain Evaluation Results

As mentioned in Section 1.3, we collect 300 rectified
wide-angle image results from the state-of-the-art rectifica-
tion methods [8, 13] to conduct the cross-domain evalua-
tion. Their results are derived from other types of synthe-
sized datasets and real-world wide-angle lenses with differ-
ent camera models. Figure 4 shows the cross-domain eval-
uation results. While the new data domain has never been
seen, our RecRecNet can achieve a promising generaliza-
tion ability by learning a flexible TPS transformation. And
we can observe that the rectangling results display reason-
able global distributions and visually pleasing local details.
Moreover, the predicted mesh locates at the most spatial
range of the rectified image, demonstrating the effective-
ness of the learned rectangling transformation.

1.7. User Study

The aim to yield the rectangular images is mainly for the
visual sense and vision perception, thus we conduct a user
study to evaluate the rectangling methods based on three
aspects: content fidelity, structure-preserving, and percep-
tion performance. In particular, content fidelity denotes the
measurement of the image content, such as the objects and
background. Structure-preserving requires evaluation, es-
pecially for the rectangling image boundary, namely, if it



is straight or not. Perception performance means the in-
tuitive object detection and semantic segmentation results.
Subsequently, we collect 200 samples in random order, and
10 volunteers with vision expertise are required to vote on
the results under different contexts. As shown in Figure 5,
RecRecNet achieves the highest votes in three tests and
shows a superior capacity for scene faithfulness.
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