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1. Introduction
In this supplementary material, we first present the proof

of Theory 1. After that, we present experiment details about
the network architectures and more experiment results to
further investigate the effectiveness of our method. Finally,
we discuss the broader impact of our work.

2. Proof of Theorem 1
This theorem is based on the Proposition 2 of [12]. We

refer the readers to [12] for more explanations.

Theorem 1 The log-sum-exp [1] smoothed structured lin-
ear assignment loss L with row-stochastic relaxation is
equivalent to the InfoNCE contrastive loss [7, 3].

Proof 1 We first relax the constraint Y ∈ Π to Y ∈ R
where R is a set of row-stochastic binary matrix, i.e.,
[Y]ij ∈ {0, 1} and

∑
j Yij = 1 ∀i. Based on it, we re-

formulate the structured linear assignment loss as,
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where yi is the i-th row of Y. The third identity is based on
the independence of the rows y1, . . . , yn and the last iden-
tity follows the fact that yi is a one-hot vector containing
the maximum index. As the structured linear loss is non-
smoothness and difficult to optimize, we utilize the common
log-sum-exp approximation [1] on the max function which
leads to,
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where τ controls the degree of smoothness. In fact, Eq. (2)
is the so-called InfoNCE contrastive loss where the first and
second term refer to the alignment and uniformity prop-
erty [19, 6], respectively. □

3. Details of Network Architectures

Given two graphs GA = {UA,EA} and GB =
{UB ,EB} with n and m keypoints each (n ≤ m). U indi-
cates the set of nodes and E denotes the set of edges. The
node and edge features are learned through the base encoder
whose structure is nearly the same as that of BBGM [14]
and NGM-v2 [18]. Concretely, the base encoder consists of
an image encoder, a graph neural network, and a projection
head. The proposed momentum encoder is with the same
structure as the base encoder.

Image encoder. Following [18, 5, 14, 13, 10, 16, 17],
we employ VGG16 [15] as the image encoder to extract
the node features. Specifically, we extract the node fea-
tures from relu4 2 and relu5 1 of VGG16, and concate-
nate them to form the initial node feature matrices ŪA ∈
Rn×d1 , ŪB ∈ Rm×d1 where d1 = 1024.

Graph neural network. Following [18, 14, 10, 13], we ini-
tial the edge structure EA ∈ Rn×n and EB ∈ Rm×m with
Delaunay triangulation and [E]ij is weighted as the differ-
ence between the coordinate positions of keypoint i and j.
We pass the initial node features Ū and the edge structure E
through graph network SplineCNN [4], which is a powerful
graph convolution network that encodes geometric features
into node features by updating the node representation via a
weighted summation of its neighbors. Formally, the update
rule at keypoint i is,

SplineCNN
(
[Ū]i

)
=

1

|N (i)|
∑

j∈N (i)

[Ū]j · g([E]ij), (3)

where N (i) indicates the neighbors of node i, g is the B-
Spline kernel, and · is the dot product. Separately feeding



the graphs GA and GB into SplineCNN, we obtain the re-
fined node features ÛA ∈ Rn×d2 , ÛB ∈ Rm×d2 where
d2 = 1024, respectively.

Projection Head. Following classical contrastive learning
paradigms [2, 3, 8, 9, 11], we obtain the final node feature
VA ∈ Rn×d3 and VB ∈ Rm×d3 where d3 = 256 through
two fully-connected layers (FCN). Formally,

V = norm
(
f2

(
f1(Û)

))
, (4)

where FCN f1 and f2 are with the batch normalization layer
and ReLU activation. norm operation denotes ℓ2 normal-
ization and the dimensionality of f1 and f2 is set to 1024
and 256, respectively.

Finally, we obtain the node similarity matrix S and the
edge adjacency matrices FA,FB through S = VAV

⊤
B ,

FA = VAV
⊤
A , and FB = VBV

⊤
B .

4. Visualization on Graph Matching
We present the visual matching results of our method and

the most comparable baselines BBGM [14] and ASAR [13]
on the Pascal VOC and Spair-71k datasets. For better visu-
alization, we crop the object according to its bounding box.
As shown in Figs. 5 and 6, our method achieves superior
matching performance, especially for the image pairs with
high viewpoint difficulty and low recognizability.

5. Broader Impact
This work could be the first work that reveals the impor-

tance of the noisy correspondence problem in graph match-
ing. Solving this problem could improve the tolerance for
the errors of annotations, which might benefit the practi-
tioners in the industry. Although the proposed COMMON
achieves remarkable improvement, the complexity of train-
ing the model is slightly larger due to the additional mo-
mentum network. In practice, we find the time cost is ap-
proximately ×1.4 times that of training a base encoder only.
Fortunately, the inference speed is exactly the same as we
only keep the base encoder during testing.
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Figure 5. Visualization of the matching results on Pascal VOC. Green and red lines denote correct and false matching results, respectively.
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Figure 6. Visualization of the matching results on SPair-71k.


