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In the supplementary, we provide more details of our method. We organize the supplementary as follows.

• In Section A, we present more details on video collection.

• In Section B, we present more details on frame filtering.

• In Section C, we present more details on trajectory generation.

• In Section D, we present more details on instruction generation.

• In Section E, we present statistics and visualization examples of our YouTube-VLN dataset.

• In Section F, we provide more implementation details of experiments.

• In Section G, we provide more details of the effectiveness of trajectory judgment task on layout reasoning ability.

• In Section H, we provide the transferability results of our method.

• In Section I, we present qualitative results of our method.

• In Section J, we discuss potential future research and social impact.

A. More Details on YouTube Video Collection
We collect real estate tour videos from YouTube1. Specifically, we restrict the videos to real estate tour videos. It is

unrealistic to play all categories of videos one by one to check whether they meet our requirements. On the contrary, we

look for several well-known YouTubers whose playlists have been well-categorized for house tour videos, and each list has a

consistent style. To find such YouTubers, we only spend less than an hour of mannual search time. In YouTube, each video

has its corresponding video id ( e.g., C99Y jG JBsg2), we obtain all the house tour videos according to the video ids and

regard the video ids as house ids.

B. More Details on Frame Filtering
Before generating a navigation trajectory, we first pre-process these videos by sparse sampling and using off-the-shelf

image classifiers [6, 7] to filter out redundant frames and noisy frames (i.e., frames with persons or outdoor scenes). A

video can be sampled at up to 60 frames per second. Generally, there is almost no obvious change between screens within 2s

intervals in a video. Therefore, we sparsely sample the videos with 0.5 frames per second. Considering that in the downstream

indoor VLN task, persons and outdoor images are not allowed to occur in the observations, we discard such noisy frames

in the house tour videos. Specifically, we employ a Resnet [7] model pre-trained on Place 365 [17] and Mask RCNN [6]

model pre-trained on COCO [13] to detect the outdoor images (as shown in Figure Ia) and images with persons (as shown in

Figure Ib), respectively. In addition, some images are filtered since they do not contain any objects and can not be extracted

to region features (as shown in Figure Ic).
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(a) Frames with outdoor scenes.

(b) Frames with persons.

(c) Frames without region features.

Figure I: Examples of filtered frames, including those with outdoor scenes (a), persons (b) or no region features (c).

(a) Distribution of the number of frames per video. (b) Distribution of actions.

(c) Distribution of predicted scene categories on YouTube frames.

Figure II: Statistics of YouTube-VLN Dataset.



C. More Details on Trajectory Generation
To mimic the sequential navigation path in R2R, we typically choose K ∈ [4, 7] as the length of a trajectory. As mentioned

in Section 3.1, a trajectory consists of room nodes and transition nodes. We randomly sample R ∈ [2, 7] room nodes in

temporal order for a trajectory. Considering that 1) navigation is a continuous problem in both temporal dimension and

spatial dimension, and 2) instruction does not necessarily describe all observations on a trajectory, the remaining (K − R)
nodes are filled with transition nodes. Each image is encoded into region features by Faster R-CNN bottom-up top-down

attention [1] model pre-trained on Visual Genome [9]. In order to approximate the panoramic visual context, we merge the

region features from similar room types per image. The images we merged are from consecutive frames and in the same

group, usually taken by the real estate agent around similar locations in order to better introduce the room.

D. More Details on Instruction Generation
As for instruction generation, we first harvest 14,031 fill-in-the-blank templates from the R2R training set. Specifically,

we extract the noun phrases and verb phrases for each human-annotated navigation instruction in the R2R training set. We

then randomly select a template that has R noun phrase blanks and (R − 1) verb phrase blanks for a trajectory with R room

nodes. We use CLIP [16] model to caption the room nodes with a template “[room] with [object]” following [12], where

the “[room]” and “[object]” represent the room category and object category of a room node, respectively. To better include

the details of the rooms, we fill a noun blank with “[room] with [object]” or “[room]” or “[object]”. A CNN inverse action

model [3] infers the transition action from one room node to another. Finally, we obtain R captions and (R−1) action words

for a template. The captions are used to fill the noun phrase blanks in the template sequentially. For each noun phrase blank

filled with the captions of one room node, we find its closest verb phrase blank and fill it with the action which is executed

to reach the next room node. Our instruction generation strategy fills the verb phrase blanks with pseudo-labeled actions,

providing a natural transition between two nodes to the created instruction.

E. Statistics and Visualizations of YouTube-VLN Dataset
In Figure II, we show some key statistics about our YouTube-VLN dataset. We construct the YouTube-VLN from the

collected 4078 videos. After filtering the noisy frames, we harvest 568K images in total. In Figure IIa, we present the

number of frames per video via a histogram. It shows that most of the videos contain more than 25 effective frames,

indicating that each video can provide sufficient image samples for an agent to learn and reason about this house. Figure IIc

presents the predicted room types of the frames. We used CLIP [16] to categorize each frame into one of the 12 labeled

room types in Matterport dataset [2]. It can be observed that most of the images in the proposed YouTube-VLN dataset cover

the core part of a house ( e.g., family room and bedroom). This enables the agent to learn the layout prior knowledge more

efficiently. Moreover, these labels are further used for instruction generation and image merging. In addition, we also show

the distribution of the pseudo-labeled actions in Figure IIb. Each action is the predicted native action from one room node to

another, representing the direction that the agent should follow. As shown in the histogram, the pseudo-labeled actions are

evenly distributed into three types of actions, endowing the agent to understand the actions efficiently. We also show some

visualization examples of the generated path-instruction pairs in YouTube-VLN as in Figure III, Figure IV, and Figure V.

F. More Implementation Details
The model architecture details are shown in Figure VI. The meanings of each layer are as follows:

• Embed-Lang: language token embeddings, which consist of word embeddings, position embeddings, and token type

embeddings.

• Embed-Vis: vision token embeddings, which consist of visual feature embeddings and position embeddings of the

current node.

• Embed-Node: node embeddings, which consist of visual feature embeddings, position embeddings, and navigation

step embeddings of all nodes in the navigation graph.

• Self-Att-Lang: self-attention layers for language input.

• Self-Att-Vis: self-attention layers for vision input.



Head toward  kitchen with counter and turn right. Stop in lounge.
Generated Instruction

⁕ Kitchen with Counter

Kitchen with Appliances

⁕ Lounge with Furniture
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Figure III: Examples of path-instruction pairs in the proposed YouTube-VLN dataset. The generated trajectory contains 2

room nodes (marked as *) and 3 transition nodes. The translucent images are the merged images.

⁕ Hallway with Door

⁕ Bedroom with Bed

⁕ Bathroom with Bathtub
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Walk forward to door. Once you are at bedroom, walk right until you reach entry way. Go left bathroom, then stop.
Generated Instruction

Figure IV: Examples of path-instruction pairs in the proposed YouTube-VLN dataset. The generated trajectory contains 4

room nodes (marked as *) and 1 transition nodes. The translucent images are the merged images.

• Cross-Att-Vis: cross-modal attention layers for vision branch.

• Cross-Att-Lang: cross-modal attention layers for language branch.

• FFN: feed-forward network, which consists of two linear layers.



⁕ bedroom with bed

bedroom with bed

⁕ bathroom with mirror

bathroom with bathtub

bedroom with bed

⁕ hallway with door
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Go right bedroom to bathroom with mirror and turn left. Wait at door.
Generated Instruction

Figure V: Examples of path-instruction pairs in the proposed YouTube-VLN dataset. The generated trajectory contains 3

room nodes (marked as *) and 3 transition nodes. The translucent images are the merged images.

F.1. Pre-training Details

As described in Section 4.1, we adopt a ViLBERT-like architecture as the same as Airbert [5]. The model architecture

of pre-training is shown in Figure VIa. For a fair comparison, we set both L1 and L2 to 6, consistent with Airbert in

the discriminative setting. For generative adaption, the number of layers L1 is equal to 9 and L2 is equal to 5 for a fair

comparison with DUET [4]. For both settings, we distribute training over 4 NVIDIA 3090 GPUs (24GB each) for 500

epochs to convergence. The batch size is 8 (2 for each GPU) and the learning rate is 2 × 10−5. We randomly selected 95%

videos per epoch as the training set and 5% videos as the test set.

F.2. Fine-tuning Details

Discriminative Setting. In our experiments, discriminative evaluation is conducted on R2R dataset. In this setting, VLN is

formulated as a path selection problem. As shown in Figure VIa, the model architecture is the same as the pre-trained model

whose classifier used in the path ranking pretext task can be directly for path selection. We follow a two-stage fine-tuning as

Airbert, which fine-tunes the agent with MLM task and MVM task in stage one and PR task in stage two. In stage one, the

batch size is 12 on 4 VIDIA 3090 GPUs (24GB each) and the learning rate is 4× 10−5. In stage two, we set the batch size as

16 on 8 NVIDIA 3090 GPUs (24GB each) and the learning rate as 1 × 10−5. The agent is fine-tuned for 30 epochs in both

stages. The visual features are also encoded by a bottom-up top-down attention [1] model. We select the model checkpoint

with the highest success rate on the val unseen validation split for the test set evaluation and leaderboard submission.

Generative Setting. In the generative setting, the agent needs to predict actions sequentially in order to reach the goal

(R2R) or find the object (REVERIE). We adopt DUET [4] as the architecture for fine-tuning as it is the state-of-the-art

model. As illustrated in Figure VIb, DUET is a three-stream architecture which is fed with P node features {ni}Pi=1,

word tokens {[CLS], {wi}Li=1 , [SEP]} and the current panorama encoding with image features {ri}ni=1 together with object

features {oi}mi=1. The BERT-like architecture is used to determine which node should the agent go to or what the object

goal id is. We initialize the language stream and the cross-modal streams using the corresponding modules in our pre-trained
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(a) Adapting Lily agent to the discriminative setting (same as Airbert [5]).
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(b) Adapting Lily agent to the generative setting (same as DUET [4]).

Figure VI: The adapted model in both discriminative and generative settings for downstream VLN tasks.

Figure VII: Evolution of training cross-entropy (CE) loss and test accuracy w.r.t. training epochs on R2R dataset.

model, highlighted as the orange dotted line in Figure VIb. The other settings remain the same as DUET for a fair comparison.

G. Effectiveness of Trajectory Judgment Task on Layout Reasoning Ability
To evaluate the effectiveness of the proposed trajectory judgment task, we conduct an experiment to evaluate whether the

agent trained with this task is able to figure out the direction of an unexplored room based on current observation. Since the

common room layout knowledge is required for figuring out this question, the accuracy of this question reveals the layout

reasoning ability of the agent.

We conduct this experiment on the R2R [2] dataset, which provides a navigation graph for each environment. Specifically,

we randomly initialize an agent on a navigation node. Then, we sample another node from the candidate node list of the

current node and use the CLIP [16] model to identify the room type of this node. Given this room type and the panorama visual



feature of the current node as text input and visual input, respectively, the agent is asked to predict the relative orientation of

the node for that room type. We define the angle between the matching node of the room type and the current orientation as

s ∈ [−180◦, 180◦]. We then divide [−180◦, 180◦] uniformly into twelve intervals and compute the interval that s belongs to.

This task thus becomes a twelve-category problem and is optimized by minimizing the cross-entropy loss:

LCE = −
12∑

i=1

yi ln ŷi (I)

where ŷi =
e−xi

∑12
k=1 e−xk

represents the predicted probability of s belonging to ith interval, xi represents ith output logit of the

model and yi ∈ {0, 1} indicates whether s belongs to ith interval. We train two agents for 500 epochs, one with the proposed

trajectory judgment task and one without it.

As shown in Figure VII, the training cross-entropy loss almost does not decrease without being pre-trained with the

trajectory judgment task. This indicates that this variant has not learned the layout reasoning ability at all. Pre-trained with

the trajectory judgment task, the agent model drops the training cross-entropy loss rapidly and the test accuracy increases

stably. Finally, the highest accuracy of the variant pre-trained with the trajectory judgment task reaches around 40%, while

the other variant is 10% (nearly equal to 1
12 ). These results verify that the trajectory judgment task facilitates learning layout

reasoning ability, achieving substantial improvement.

H. Transferability Results to Other VLN Benchmarks
To better confirm the effectiveness of the our method, we evaluate the transferability of Lily on the other three VLN

benchmarks, i.e., RxR [10], R4R [8] and SOON [18]. Specifically, we transfer the model trained on R2R to RxR and R4R

and the model trained on REVERIE to SOON without fine-tuning. In Table I, most of the results share the same trend as

the results on the R2R and REVERIE dataset, i.e., consistently surpassing the SOTA with large margins on val unseen split.

These results demonstrate that our method can generalize well to different domains with varying complexity.

Methods
RxR R4R SOON

SR SPL SR SPL SR SPL

DUET [4] 23.05 18.05 16.01 13.20 2.83 2.09

Lily (ours) 27.20 20.51 20.76 17.34 5.72 4.10

Table I: Transfer results on RxR, R4R and SOON under val unseen split.

I. Qualitative Results
We also present some visualization examples of our Lily agent and the state-of-the-art agent Airbert on the R2R dataset.

As shown in Figure VIII, given the instruction that asks the agent to go to a dining room, our Lily agent is able to arrive at

the office more quickly than Airbert. We speculate that our Lily agent can be aware of the layout knowledge that an office is

usually located in a room on either side of a hallway. Hence, our Lily agent goes straight to the hallway (the red arrow in step

4), while Airbert goes to an entryway connecting the door to the outside(the red arrow in step 4). Our method also improves

the understanding of the actions in an instruction. In Figure IX, our Lily agent can easily understand the instruction which

asks it to turn left (the red arrow in step 4). However, when pre-trained with incorrect actions, Airbert feels confused about

the action words and does not execute the “Turn left” in the instruction, and keeps going forward (the red arrow in step 4),

eventually not finding the kitchen.

J. Potential Future Research and Social Impact
Our method is still restricted to graph-based environments. In a real-world application, we may expect the agent actuates

the action continuously. This requires us to build more continuous navigation trajectories for the pre-training dataset. Besides,

with more powerful vision and language foundation models [11, 15, 14], the models used to construct the proposed dataset

can be further improved as more precise and open-world. We can also increase the data diversity by adding richer video and

instruction templates.

In the future, agents can be able to actively learn some helpful skills by watching videos like us humans and then assist

people with their jobs (e.g., delivering and cleaning), thereby reducing high training costs. However, data security can be an

important issue. For some videos that humans keep secret or do not want agents to see, countermeasures should be taken to

prevent agents from accessing such videos, otherwise, it may affect human survival one day.



Step 1

Step 2

Step 3

Step 5

Lily Airbert

Walk out of the living room into the hallway. Take the first right, and walk straight. Stop on the rug in the office and stand in 
front of the bookshelf. 

Instruction

Step 4

Step 1

Step 2

Step 3

Step 5

Step 4

Step 6

Figure VIII: Visualisation of a trajectory where we compare the performance of our Lily agent with Airbert. The centre of

each panorama is the heading direction of the agent at the corresponding time step. Red arrows indicate the predicted actions

in each time step. Our Lily agent successfully leverages the layout prior knowledge to find the office.



Step 1

Step 2

Step 3

Step 5

Lily Airbert

Go past the circle of chairs toward the door. Turn right and
go into the hallway. Turn left to go into the kitchen.

Instruction

Step 4
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Step 5

Step 4

Step 6

Step 7

Figure IX: Visualisation of a trajectory where we compare the performance of our Lily agent with Airbert. The centre of each

panorama is the heading direction of the agent at the corresponding time step. Red arrows indicate the predicted actions in

each time step. Our Lily agent correctly understands the action in the instruction and executes it.
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