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A. Appendix
A.1. Optimization Process of MHCN

Algorithm 1 presents the detailed optimization steps of
the proposed MHCN.

Algorithm 1 Pseudocode to optimize our MHCN
Input: Multi-view dataset {Xm ∈ RN×Dm}Mm=1;

Temperature parameters τalign and τuni;
Gaussian potential kernel parameter t;
Trade-off coeffienct α.

Output: Multi-view hierarchical clustering tree T.
1: Initialization: Initialize the parameters of the hyper-

bolic autoencoders {θenc, θdec} = {θmenc, θ
m
dec}

M
m=1.

2: While not reaching the maximal epochs do:
3: Update {θenc, θdec} by Ltotal to learn{

Zm
hyp ∈ Bd

}
.

4: End While
5: Generate the common hyperbolic representations

Z∗
hyp = β-fusion(Z1

hyp,Z
2
hyp, . . . ,Z

M
hyp).

6: Decoding T from Z∗
hyp by the bottom-up decoding

strategy.

A.2. Description of Notations

To be clear, The notations and corresponding definitions
used in this paper are summarized in Table 1.

A.3. Riemannian Geometry

In this section, we give a more detailed review of Rie-
mannian geometry and Riemannian manifolds to keep this
paper self-contained. Note that we denote the Euclidean in-
ner product and norm for any real vectors x,y ∈ Rn as
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⟨x,y⟩ and ||x||. An n-dimensional manifold M [5, 15]
is a real and smooth space, which can be locally approxi-
mated to a linear n-dimensional Euclidean space Rn at each
point x ∈ M. Giving an example in the real world, the
earth can be modeled as a hypersphere from the global per-
spective which is a smooth manifold, while its local area
can be regarded as a flat plane which can be approximated
by 2-dimensional Euclidean space R2. Associated with
any point x of the manifold M, the corresponding local
space is called the tangent space at the point x, denoted as
TxM. It represents an n-th dimensional space of all di-
rections in which a smooth path on the manifold M can
tangentially pass through x, which is isomorphic to Rn. On
each tangent space TxM , the corresponding metric tensor
gx : TxM×TxM → R defines an inner product on TxM,
and the matrix form G(x) of the metric tensor is represented
as gx(u,v) = uTG(x)v, where ∀u,v ∈ TxM × TxM.
The norm of a vector z in tangent space can be also derived
from the inner product, denoted as ||z||x =

√
|⟨z, z⟩x|.

Then, a Riemannian metric g = (gx)x∈M can be defined
as a collection of inner products on the associated tangent
space. By means of the metric tensor, the local geometric
attributions of angle, length of curves, surface area and vol-
ume, can be integrated to derive global quantities the mani-
fold. In this way, a Riemannian manifold can be defined as
a matching tuple (M, g), where a manifold M is prepared
with a Riemannian metric g.

The concept of a geodesic is generalized to the shortest
path passing through two data points x,y on manifold M
via a constant speed vector, in analogy with the concept of
a straight line in Euclidean space. Let γ : a → b ∈ M
denotes a curve on the manifold M, which is defined by
the length of γ, L(γ) =

∫ b

a
|γ′(t)|

1
2

γ(t)dt [6]. Therefore,
the geodesic distance is a smooth path γ of minimal length
between two points x and y on the manifold M, defined
as dM(x,y) = inf L(γ), where inf represents all possible



Notation Definition

X The set of data samples.
Xm The m-th view of multi-view data.
Zm

tan The Euclidean features in tangent space of the m-th view.
Zm

hyp The hyperbolic latent codes of the m-th view.
Z∗

hyp The concatenated common hyperbolic representations.
X̂

m
The reconstructed data samples of the m-th view.

xm
i The i-th input data sample of m-th view.

zm
i The i-th latent feature of m-th view.
T The decoding multi-view hierarchical clustering tree.
N The number of data samples.
M The number of views.

Dm The dimensionality of the m-th view.
d The dimensionality of latent hyperbolic space.

Table 1: Notations used in MHCN

curves γ from the point x to the point y.
The parallel transport Px→y : TxM → TyM from x

to y is defined as a linear isometry from TxM to TyM,
moving a tangent vector in TxM along the geodesic from
x to y in a parallel way. In order to project a tangent vector
in TxM onto M along a geodesic with constant velocity,
the exponential map expx : TxM → M is given. The
logarithmic map logx : M → TxM is the inverse form of
the exponential map, projecting a vector from M back to
TxM [17, 13].

A.4. Poincaré Ball Model of Hyperbolic Geometry

Hyperbolic Geometry is a non-Euclidean geometry with
constant negative curvature, which satisfies all five basic
rules in Euclidean Geometry only except the fifth parallel
postulate [2]. Hence, the volume of the hyperbolic space
grows exponentially with its radius in finite dimensions,
which allows a meaningful compacted hierarchical struc-
ture naturally.

To describe this mathematically, an n-dimensional hy-
perbolic space Hn can be established through several
isometric models, e.g., the basic Lorentz (hyperboloid)
model, the Poincaré ball model and the Poincaré half space
model [2]. We choose to perform our model on the n-
dimensional Poincaré ball model with a constant negative
curvature −1, denoted as (Bn, gB), where Bn = {x ∈
Rn : ||x||2 < 1} is an open ball of curvature −1, and its
hyperbolic metric tensor gBx = λ2

xg
E is conformal to the

Euclidean one. λ2
x = 2

1−||x||2 is a conformal factor, and
gE = In denotes the dot product in the Euclidean space.
The distance dB(x,y) between two points x,y ∈ Bn is
given by

dB(x,y) = cosh−1(1 + 2
||x− y||2

(1− ||x||2)(1− ||y||2)
). (1)

Given z, z′ ∈ Bn and t ∈ TzBn, the exponential
map expz : TzBn → Bn and the logarithm map logz :
Bn → TzBn realize the projection from the Euclidean
space onto the Poincaré ball and vice versa, respectively.
To enable the mathematical operations for hyperbolic space
models, the framework of gyrovector spaces provides the
algebraic setting for the hyperbolic geometry, with the
Möbius Addition ⊕ for any z, z′ ∈ Bn as

z ⊕ z′ =
(1 + 2⟨z, z′⟩+ ||z′||2)z + (1− ||z||2)z′

1 + 2⟨z, z′⟩+ ||z||2||z′||2
. (2)

With the Möbius Addition ⊕ [19], the closed-form ex-
pressions of expz and logz on the Poincaré ball are respec-
tively given by

expz(t) = z ⊕ (tanh(
λz||t||

2
)

t

||t||
),

logz(z
′) =

2

λz
arctanh(|| − z ⊕ z′||) −z ⊕ z′

|| − z ⊕ z′||
.

(3)

For convenience in practice, z is usually set to the origin 0,
so the exponential and the logarithm maps can be simplified
as

exp0(t) = tanh(||t||) t

||t||
),

log0(z
′) = arctanh(||z′||) z′

||z′||
.

(4)

With the help of the above mapping operations exp0(t) and
log0(z

′), our model is able to perform the basic transfor-
mations of the latent representations between the Euclidean
space and the hyperbolic space.

A.5. The Details of Datasets

The detailed information about the datasets is shown in
Table 2. We conduct our experiments on six widespread



multi-view datasets [10, 21, 18, 14], including four regular-
scale datasets (i.e., MNIST-USPS, BDGP, Caltech, COIL-
20, and BBCSport) and two large-scale datasets (i.e., Multi-
Fashion and NR-MNIST).

• MNIST-USPS [14] is a common handwritten digital
dataset with 5,000 images size from 10 categories(0-
9), where the digits with 28 × 28 dimensions from
MNIST and those with 16×16 dimensions from USPS
are treated as two views. The MNIST and USPS
views are both randomly sampled from the MNIST
and USPS datasets respectively. The way of construct-
ing the MNIST-USPS dataset is to pick pairs of indi-
vidual objects from the corresponding classes of multi-
ple different datasets, i.e., MNIST and USPS datasets.
The above construction strategy is also applied for
Multi-Fashion and NR-MNIST datasets.

• BDGP [9] is also a popular multi-view dataset char-
acterized by a visual-feature view and a textual-visual
view. The visual view is with 1750 dimensions, and the
textual view is with 79 dimensions. BDGP includes
2,500 images of Drosophila embryos divided into 5
classes. Different from the construction strategy for
MNIST-USPS, multi-view datasets, like BDGP, Cal-
tech, and COIL-20, are built by concatenating multiple
feature extractors or multi-modal measurements.

• Caltech [4] is an RBG image dataset constructed with
5 different visual descriptors, i.e., 40-dim wavelet mo-
ments (WM) feature, 254-dim CENTRIST feature,
1,984-dim HOG feature, 512-dim GIST feature, and
928-dim LBP feature. Each view of Caltech contains
1400 images and 7 classes.

• COIL-20 [18], consisting of 480 grayscale images in
128×128 pixel size of 20 categories, is described by 3
views. Different views represent different poses of the
same object.

• BBCSport [11] is a text dataset in 5 topic areas. It con-
sists of 544 documents collected from the BBC Sport
website of sports news articles, related to 2 different
viewpoints. The first view is with 3183 dimensions,
and the second view is with 3203 dimensions.

• Multi-Fashion [20] is also a 28 × 28-dimensional
grayscale image dataset on 10 different kinds of 10,000
fashionable products. Different views of the same item
are represented by the different products from the same
categories.

• In terms of NR-MNIST, which is also a variant of the
handwritten digital image dataset MNIST, we also fol-
low [20] to regard the noisy-processed MNIST and the
rotated-processed MNIST as two different views. We

0:a 1:a 2:b 3:a 4:c 5:c 6:a 7:c

LCA of 0 & 3

LCA of 1 & 6

Purity of 0 & 3: 3/4=0.75 Purity of 1 & 6: 4/8=0.5

Figure 1: Illustration of DP

use 60,000 image pairs for the general MVHC exper-
iments in Section 4.2, and use the rest 10,000 image
pairs for the inductive HC experiments in Section 4.5.

A.6. Dendrogram Purity Measurement

To evaluate the quality of the final hierarchical clustering
tree, we follow [12, 8, 10] to adopt Dendrogram Purity (DP)
as the metric for more complex hierarchical clustering.

Assume there is a ground truth flat clustering C⋆ =
{C⋆

k}Kk=1 containing K clusters and denote any data point
pairing (xi, xj) that is grouped into the same ground truth
cluster as Pairs⋆ = {(xi, xj)|C⋆(xi) = C⋆(xj)}. It is intu-
itive that with regard to the ground truth clustering, the com-
prehensive DP measurement for the HC tree T can be com-
puted through the following steps, i.e., (1) traveling through
all arbitrary data point pairs xi, xj belonging to the same
ground truth cluster, i.e., C⋆(xi) = C⋆(xj), (2) finding the
descendant leaves of the LCA of the two nodes xi, xj in the
tree, represented as subtree(T [xi ∨ xj ]), and (3) averaging
the purity that any two leaves from the subtree also belongs
to the same cluster pur(subtree(T [xi ∨ xj ]), C⋆

k). Thus, as
shown in Figure 1 the DP measurement is formulated as

DP(T ) =
1

|Pairs|

K∑
k=1

∑
xi,xj∈C⋆

k

pur(subtree(T [xi∨xj ]), C⋆
k).

(5)
More intuitively, the tree structures with higher DP val-

ues are purer, which means the decoding dendrograms ex-
tract more similar hierarchies to the clusters of the ground
truth flat partition.

A.7. Implementation Details

MHCN. The proposed MHCN model is implemented
in the PyTorch platform. For efficient tree exploration
and representation, the corresponding SciPy, networkx, and
ETE (Environment for Tree Exploration) Python toolkits
are adopted. All experiments are conducted on a Linux
Server with an Intel Xeon E5-2630 v4 CPU, an NVIDIA
TITAN Xp GPU, and 128GB RAM.

In MHCN, multiple common fully connected net-
works attached to the latent hyperbolic space with the



Dataset Type # Sample # View # Class

MNIST-USPS Digits of Different Styles 5,000 2 10
BDGP Image+Text 2,500 2 5
Caltech WM+CENTRIST+LBP+GIST+HOG 1,400 5 7
COIL-20 Objects from Different Angles 480 3 20
BBCSport Different Segments of the Same Document 544 2 5
Multi-Fashion Clothes of Different Styles 10,000 3 10
NR-MNIST Noisy MNIST+Rotated MNIST 70,000 2 10

Table 2: The description of multi-view datasets.

same architectures are adopted as the hyperbolic autoen-
coders (HAEs). To learn the latent hierarchical hyperbolic
embeddings, the encoder of the HAE for each view is fol-
lowed by the exp0 mapping function, and the decoder is
composed of an MLP pre-mapped by the log0 mapping
function. To be specific, the structure of every HAE can
be represented as Xm − FC500 − FC500 − exp0(Z

m
tan)−

Zm
hyp − log0(Z

m
tan) − FC500 − FC500 −Xm, where FCl

is the fully connected layer including l neurons.
We use the minimal dataset-dependent hyper-parameter

set for tuning. We set the latent dimension d, i.e., the di-
mensionality of the Poincaré ball, to 20 for all datasets.
Since the parameters in hyperbolic space for our model can
be considered as Euclidean parameters computed through
Zm

hyp = exp0(Z
m
tan), where Zm

tan ∈ Rd, we directly train
our model by using the common optimizer Adam with the
learning rate set to 1e − 3 on MNIST-USPS, BDGP and
Noisy-Rotated-MNIST, 5e − 4 on Caltech, COIL-20, and
BBCSport, and 5e − 3 on Multi-Fashion. The trade-off
coefficient α is set to 0.6. We empirically set t = 1.0
on all datasets, and set τalign = τuni to 1.0 on MNIST-
USPS, BDGP, BBCSport, Multi-Fashion and NR-MNIST
datasets, and 0.5 on Caltech and COIL-20 datasets. More-
over, we train the whole model for 20, 20, 200, 200, 150,
200, 50 epochs on MNIST-USPS, BDGP, Caltech, COIL-
20, BBCSport, Multi-Fashion and NR-MNIST datasets, re-
spectively. The batch size is set to 128 for all datasets. We
run our model for 5 times and report the average perfor-
mance in Section 4.2.

Baseline methods. In terms of baseline methods,
the DP results of the baselines reported in Section 4.2
on all datasets except NR-MNSIT are excerpted from
CMHHC [10]. More specifically, firstly, for the shallow
discrete single-view hierarchical agglomerative clustering
methods (HACs), like Single-linkage, Complete-linkage,
Average-linkage, and Ward-linkage algorithms, we regard
the concatenation of multiple views as a single-view pattern
and directly apply the above single-view HACs by SciPy
Python library, where we use the default distance metric by
SciPy for HACs, i.e., the Euclidean distance. In addition,
the Ward-linkage method tends to perform the best among

the HACs, and Ward-linkage is correctly defined only if the
Euclidean metric is adopted. Secondly, for the deep contin-
uous single-view hierarchical clustering approaches (UFit
and HypHC), and the existing multi-view hierarchical clus-
tering methods (MHC and CMHHC), we follow the settings
of CMHHC [10] for a fair comparison.

A.8. Experimental Results and Analysis

The DP comparison including the average values and the
standard deviations (std) of 5 runs is presented in Table 4.
As observed in Section 4.2, MHCN outperforms all base-
line methods, especially the second-best CMHHC, on all
datasets. In addition, the std results reported in Table 4 indi-
cate the stable clustering performance given the mini-batch
variance. These observations demonstrate the superiority
of our MHCN against other methods, which is due to the
one-stage pipeline to optimize the total objective designed
to realize the characteristics of the high-quality multi-view
hierarchical clustering trees.

A.9. Complexity Analysis

Let n represent the batch size. Generally, N ≫ M,n.
In the mini-batch optimization process, the complexities of
computing the multi-view alignment loss, the reconstruc-
tion loss, and the hyperbolic uniformity loss are O(M2n),
O(Mn), and O(Mn2), respectively. Additionally, the com-
plexity of the bottom-up decoding strategy is O(N2) [1, 7,
3]. The whole complexity of MHCN can be calculated as
O(N/n(Mn+M2n+Mn2)+N2). Furthermore, the low-
est complexity of baseline HACs is O(N2) of single linkage
heuristic [16], which is equal to that of MHCN.

Therefore, combined with the DP results on all datasets
in Section 4.2, and the total time spent on NR-MNIST
dataset in Section 4.4, both the theoretical value and the ex-
perimental results demonstrate the scalability of our method
for large-scale scenarios.

A.10. Training Time

OOM (out-of-memory) is encountered with NR-MNIST
on our server, so we provide the runtime on other datasets as
a reference. Table 3 shows the average runtime of 5 runs for



Method MNIST-USPS BDGP Caltech COIL-20 BBCSport Multi-Fashion

UFit 23.03s 17.16s 12.69s 9.13s 10.04s 143.87s
HyperHC 5796.12s 1586.22s 191.09s 199.24s 250.32s 15969.39s
MHC 51.46s 38.42s 43.13s 234.42s 301.03s 101.55s
CMHHC 6153.49s 1964.75s 716.78s 376.45s 685.43s 20932.18s
MHCN 38.36s 22.79s 146.75s 50.90s 142.72s 499.98s

Table 3: The average time spent for “OOM” methods on datasets except NR-MNIST.

Method MNIST-USPS BDGP Caltech COIL-20 BBCSport Multi-Fashion NR-MNIST

HAC-Single 29.81% 61.88% 23.67% 72.56% 27.66% 27.89% 25.77%
HAC-Complete 54.36% 56.57% 30.19% 69.95% 34.78% 48.72% 27.71%
HAC-Average 69.67% 45.91% 30.90% 73.14% 29.05% 65.70% 59.74%
HAC-Ward 80.38% 58.61% 35.69% 80.81% 62.65% 72.33% 76.91%
UFit 21.67% 69.20% 19.00% 55.41% 30.33% 25.94% OOM
HyperHC 32.99%±1.69% 31.21%±5.33% 22.46%±0.46% 28.50%±1.69% 29.08%±1.75% 25.65%±1.69% OOM

MHC 78.27%±0.01% 89.14%±0.01% 45.22%±0.03% 66.50%±0.30% 42.43%±0.02% 54.81%±0.01% 40.87%±0.80%
CMHHC 94.49%±0.26% 91.53%±2.52% 66.52%±4.12% 84.89%±2.97% 53.50%±2.79% 96.25%±2.15% OOM

MHCN 99.22%±0.11% 96.22%±0.49% 77.14%±1.94% 94.70%±0.63% 78.93%±2.08% 97.67%±0.34% 98.71%±0.27%

Table 4: The DP comparison results (%). Since there are no mini-batch training procedures, the std values of HAC-Single,
HAC-Complete, HAC-Average, HAC-Ward, and UFit are 0.00%.

UFit, HyperHC, MHC, CMHHC, and our method MHCN
on other datasets. Our method is significantly faster than
HypHC and CMHHC, and comparable with MHC in terms
of time cost. Since MHCN involves the procedure of rep-
resentation learning, the time cost may be influenced by the
speed of model convergence, which is dataset-dependent.
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