
Appendix

A. Detailed Architecture Specifications

Tab. 3 provides a detailed overview of the architecture
specifications for all models, with an assumed input image
size of 224×224. The stem of the model is denoted as ”conv
n × n, 64-d, BN; conv 2 × 2, 64-d, LN”, representing two
convolution layers with a stride of 2 to obtain a more infor-
mative token sequence with a length of H

4 ×W
4 . Here, ”BN”

and ”LN” indicate Batch Normalization and Layer Normal-
ization [1], respectively, while ”64-d” denotes the convolu-
tion layer with an output dimension of 64. The multi-head
mixed convolution module with 4 heads (conv 3 × 3, conv
5 × 5, conv 7 × 7, conv 9 × 9) is denoted as ”sam. head.
4”, while ”msa. head. 8” represents the multi-head self-
attention module with 8 heads. Additionally, ”sam. ep r. 2”
indicates a Scale-Aware Aggregation module with twice as
much expanding ratio.

B. Detailed Experimental Settings

B.1. Image classification on ImageNet-1K

We trained all models on the ImageNet-1K dataset [5] for
300 epochs, using an image size of 224 × 224 . Following
Swin [10], we utilized a standardized set of data augmen-
tations [4], including Random Augmentation, Mixup [23],
CutMix [22], and Random Erasing [26]. To regularize our
models, we applied Label Smoothing [16] and DropPath [7]
techniques. The initial learning rate for all models was set
to 2 × 10−3 after 5 warm-up epochs, beginning with a rate
of 1 × 10−6. To optimize our models, we employed the
AdamW [11] algorithm and a cosine learning rate sched-
uler [12]. The weight decay was set to 0.05 and the gradient
clipping norm to 5.0. For our mini, tiny, small, base, and
large models, we used stochastic depth drop rates of 0.1,
0.1, 0.2, 0.3, and 0.5, respectively. For more details, please
refer to the Tab. 1 provided.

B.2. Image classification pretrained on ImageNet-
22K

We trained the SMT-L model for 90 epochs using a batch
size of 4096 and an input resolution of 224×224. The ini-
tial learning rate was set to 1 × 10−3 after a warm-up pe-
riod of 5 epochs. The stochastic depth drop rates were set
to 0.1. Following pretraining, we performed fine-tuning on
the ImageNet-1K dataset for 30 epochs. The initial learning
rate was set to 2 × 10−5, and we utilized a cosine learn-
ing rate scheduler and AdamW optimizer. The stochastic
depth drop rate remained at 0.1 during fine-tuning, while
both CutMix and Mixup augmentation techniques were dis-
abled.

config value

optimizer AdamW
LR 2e-3
weight decay 0.05
optimizer momentum β1, β2=0.9, 0.999

batch size 1024
LR schedule cosine
minimum learning rate 1e-5
warmup epochs 5
warmup learning rate 1e-6
training epochs 300
augmentation rand-m9-mstd0.5-inc1
color jitter 0.4
mixup α 0.2
cutmix α 1.0
random erasing 0.25
label smoothing 0.1
gradient clip 5.0
drop path [0.1, 0,1, 0,2, 0,3, 0.5] (M,T,S,B,L)

Table 1: Image Classification Training Settings

B.3. Object Detection and Instance Segmentation

In transferring SMT to object detection and instance seg-
mentation on COCO [9], we have considered six common
frameworks: Mask R-CNN [6], Cascade Mask RCNN [2],
RetinaNet [8], Sparse R-CNN [15], ATSS [25], and
DINO [24]. For DINO, the model is fine-tuned for 12
epochs, utilizing 4 scale features. For optimization, we
adopt the AdamW optimizer with an initial learning rate of
0.0002 and a batch size of 16. When training models of dif-
ferent sizes, we adjust the training settings according to the
settings used in image classification. The detailed hyper-
parameters used in training models are presented in Tab. 2.

config value

optimizer AdamW
LR 0.0002
weight decay 0.05
optimizer momentum β1, β2=0.9, 0.999

batch size 16
LR schedule steps:[8, 11] (1×), [27, 33] (3×)
warmup iterations (ratio) 500 (0.001)
training epochs 12 (1×), 36 (3×)
scales (800, 1333) (1×), Multi-scales [10] (3×)
drop path 0.2 (Small), 0.3 (Base)

Table 2: Object Detection and Instance Segmentation Train-
ing Settings

B.4. Semantic Segmentation

For ADE20K, we utilized the AdamW optimizer with
an initial learning rate of 0.00006, a weight decay of 0.01,



downsp. rate
(output size) Layer Name SAM-M SAM-T SAM-S SAM-B SAM-L

stage 1 4×
(56×56)

SAM
Block

conv 3×3, 64-d, BN
conv 2×2, 64-d, LN

conv 3×3, 64-d, BN
conv 2×2, 64-d, LN

conv 7×7, 64-d, BN
conv 2×2, 64-d, LN

conv 7×7, 64-d, BN
conv 2×2, 64-d, LN

conv 7×7, 96-d, BN
conv 2×2, 96-d, LN dim 64

sam.head. 4
sam.ep r. 2

 × 1

 dim 64
sam.head. 4
sam.ep r. 2

 × 2

 dim 64
sam.head. 4
sam.ep r. 2

 × 3

 dim 64
sam.head. 4
sam.ep r. 2

 × 4

 dim 96
sam.head. 4
sam.ep r. 2

 × 4

stage 2 8×
(28×28)

SAM
Block

conv 3×3, 128-d, LN conv 3×3, 128-d, LN conv 3×3, 128-d, LN conv 3×3, 128-d, LN conv 3×3, 192-d, LN dim 128
sam.head. 4
sam.ep r. 2

 × 1

 dim 128
sam.head. 4
sam.ep r. 2

 × 2

 dim 128
sam.head. 4
sam.ep r. 2

 × 4

 dim 128
sam.head. 4
sam.ep r. 2

 × 6

 dim 192
sam.head. 4
sam.ep r. 2

 × 6

stage 3 16×
(14×14)

Mix
Block

conv 3×3, 256-d , LN conv 3×3, 256-d , LN conv 3×3, 256-d , LN conv 3×3, 256-d , LN conv 3×3, 384-d , LN
dim 256

sam.head. 4
sam.ep r. 2
msa.head. 8

 × 4


dim 256

sam.head. 4
sam.ep r. 2
msa.head. 8

 × 8


dim 256

sam.head. 4
sam.ep r. 2
msa.head. 8

 × 18


dim 256

sam.head. 4
sam.ep r. 2
msa.head. 8

 × 28


dim 384

sam.head. 4
sam.ep r. 2
msa.head. 8

 × 28

stage 4 32×
(7×7)

MSA
Block

conv 3×3, 512-d , LN conv 3×3, 512-d , LN conv 3×3, 512-d , LN conv 3×3, 512-d , LN conv 3×3, 768-d , LN[
dim 512

msa.head 16

]
× 1

[
dim 512

msa.head 16

]
× 1

[
dim 512

msa.head 16

]
× 1

[
dim 512

msa.head 16

]
× 2

[
dim 768

msa.head 16

]
× 3

Table 3: Detailed architecture specifications at four stages for SMT.

w/o. EHN (all SAM block) w/. EHN (SAM + MSA)

1 3 5 7

input

1 3 5 7

Figure 1: Visualization of modulation values at the penultimate stage for two variants of SMT. (Left: w/o. EHN) Stacking
of SAM blocks exclusively in the penultimate stage. (Right: w/. EHN) The utilization of an evolutionary hybrid stacking
strategy, wherein one SAM block and one MSA are successively stacked.

and a batch size of 16 for all models trained for 160K itera-
tions. In terms of testing, we reported the results using both
single-scale (SS) and multi-scale (MS) testing in the main
comparisons. For multi-scale testing, we experimented with
resolutions ranging from 0.5 to 1.75 times that of the train-
ing resolution. To set the path drop rates in different models,
we used the same hyper-parameters as those used for object
detection and instance segmentation.

C. More Experiments

C.1. More Variants of SMT

This section demonstrates how we scaled our SMT to
create both smaller (SMT-M) and larger (SMT-L) models.
Their detailed architecture settings are provided in Tab. 3,
along with previous variants. We then evaluated their per-
formance on the ImageNet-1K dataset.

As shown in Tab. 4, SMT-M achieves competitive results
with a top-1 accuracy of 78.4%, despite having only 6.5M
parameters and 1.3 GFLOPs of computation. On the other
side, SMT-L shows an example to scale our SMT to larger
models, which outperforms other state-of-the-art networks
with similar parameters and computation costs, achieving a
top-1 accuracy of 84.6%. These results confirm the strong
scalability of the SMT architecture, which can be applied to
create models of varying sizes, demonstrating its immense
potential.

D. Additional Network Analysis

In Fig. 1, we present the learned scale-aware modulation
(SAM) value maps in two variants of SMT-T: evolution-
ary SMT, which employs an evolutionary hybrid stacking
strategy, and general SMT, which only employs SAM in the



method
image
size

#param. FLOPs
ImageNet
top-1 acc.

RegNetY-4G [13] 2242 21M 4.0G 80.0
RegNetY-8G [13] 2242 39M 8.0G 81.7

RegNetY-16G [13] 2242 84M 16.0G 82.9
EffNet-B3 [17] 3002 12M 1.8G 81.6
EffNet-B4 [17] 3802 39M 4.2G 82.9
EffNet-B5 [17] 4562 30M 9.9G 83.6
EffNet-B6 [17] 5282 43M 19.0G 84.0

PVT-T [19] 2242 13M 1.8G 75.1
PVT-S [19] 2242 25M 3.8G 79.8
PVT-M [19] 2242 44M 6.7G 81.2
PVT-L [19] 2242 61M 9.8G 81.7
Swin-T [10] 2242 29M 4.5G 81.3
Swin-S [10] 2242 49.6M 8.7G 83.0
Swin-B [10] 2242 87.8M 15.4G 83.4
Twins-S [3] 2242 24M 2.9G 81.7
Twins-B [3] 2242 56M 8.6G 83.2
Focal-T [21] 2242 29M 4.9G 82.2
Focal-B [21] 2242 89.8M 16.4G 83.8

Shunted-T [14] 2242 11.5M 2.1G 79.8
Shunted-S [14] 2242 22.4M 4.9G 82.9
Shunted-B [14] 2242 39.6M 8.1G 84.0
FocalNet-T [20] 2242 28.6M 4.5G 82.3
FocalNet-S [20] 2242 50.3M 8.7G 83.5
FocalNet-B [20] 2242 88.7M 15.4G 83.9
MaxViT-T [18] 2242 31M 5.6G 83.6
MaxViT-S [18] 2242 69M 11.7G 84.5
MaxViT-B [18] 2242 120M 23.4G 84.9

SMT-M 2242 6.5M 1.3G 78.4
SMT-T 2242 11.5M 2.4G 82.2
SMT-S 2242 20.5M 4.7G 83.7
SMT-B 2242 32.0M 7.7G 84.3
SMT-L 2242 80.5M 17.7G 84.6

Table 4: Comparison of different backbones on ImageNet-
1K classification.

penultimate stage. In evolutionary SMT-T, comprising a to-
tal of 8 layers in the penultimate stage, we select the lay-
ers ([1, 3, 5, 7]) containing SAM block and compare them
with the corresponding layers in general SMT. Through vi-
sualization, we can observe some noteworthy patterns. In
general SMT, the model primarily concentrates on local de-
tails in the shallow layers and on semantic information in
the deeper layers. However, in evolutionary SMT, the fo-
cus region does not significantly shift as the network depth
increases. Furthermore, it captures local details more effec-
tively than general SMT in the shallow layers, while pre-
serving detailed and semantic information about the target
object at deeper layers. These results indicate that our evo-
lutionary hybrid stacking strategy facilitates SAM blocks in
capturing multi-granularity features while allowing multi-
head self-attention (MSA) blocks to concentrate on captur-
ing global semantic information. Accordingly, each block
within each layer is more aptly tailored to its computational

characteristics, leading to enhanced performance in diverse
visual tasks.

E. Additional Visual Examples

We present supplementary visualization of modulation
value maps within our SMT. Specifically, we randomly se-
lect validation images from the ImageNet-1K dataset and
generate visual maps for modulation at different stages, as
illustrated in Fig 2. The visualizations reveal that the scale-
aware modulation is critical in strengthening semantically
relevant low-frequency signals and accurately localizing the
most discriminative regions within images. By exploiting
this robust object localization capability, we can allocate
more effort towards modulating these regions, resulting in
more precise predictions. We firmly believe that both our
multi-head mixed convolution module and scale-aware ag-
gregation module have the potential to further enhance the
modulation mechanism.

Stage 1 Stage 2 Stage 3Input

Input Stage 1 Stage 2 Stage 3

Figure 2: Visualization of modulation value maps at the top
three stages.
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