
LightGlue:
Local Feature Matching at Light Speed

Supplementary Material
In the following pages, we present additional details on

the experiments conducted in the main paper.

A. Image Matching Challenge
In this section, we present results obtained on the Pho-

toTourism dataset of the Image Matching Challenge 2020
(IMC) [26] in both stereo and multi-view tracks. The data
is very similar to the MegaDepth [38] evaluation, exhibits
similar statistics but different scenes. We follow the stan-
dardized matching pipeline of IMC with the setup and hy-
perparameters of SuperGlue [56]. We run the evaluation on
the 3 validation scenes from the PhotoTourism dataset with
LightGlue trained with two kinds of local features.

SuperPoint: For SuperPoint+SuperGlue and Super-
Point+LightGlue, we extract a maximum of 2048 keypoints
and use DEGENSAC [11, 12, 43] with a threshold on the
detection confidence of 1.1 in the stereo track (as suggested
by SuperGlue). We do not perform any parameter tuning and
reuse our model from the outdoor experiments with adaptive
depth- and width, and use efficient self-attention [14] and
mixed-precision during evaluation.

DISK: We also train LightGlue with DISK local fea-
tures [73], a previous winner of the Image Matching Chal-
lenge. We follow the same training setup as for SuperPoint.
For evaluation, we follow the guidelines from the authors
for the restricted keypoint scenario (max 2048 features per
image) and use mutual nearest neighbor matching with a
ratio test of 0.95 as a baseline. We again use DEGENSAC
for relative pose estimation with a threshold of 0.75.

Results: Table 7 reports the evaluation results. We also re-
port the average matching speed over all 3 validation scenes.
LightGlue is competitive with SuperGlue both in the stereo
and multi-view track, while running 2.5× faster. Most of
these run time improvements are due to the adaptive-depth,
which largely reduces the run time for easy image pairs.

LightGlue trained with DISK [73] largely outperforms
both the nearest-neighbor matching baseline with ratio test
but also SuperPoint+LightGlue. On the smaller thresholds,
DISK+LightGlue achieves +8%/+5% AUC in the stereo and
multi-view tasks compared to our SuperPoint equivalent.
With DISK, our model predicts 30% more matches than
SP+LightGlue with an even higher epipolar precision. For
DISK, the improvements are larger because DISK+NN+ratio
only performs context aggregation within the image (from
the U-Net), while LightGlue also aggregates information
between images.

SfM features
(2048 keypoints)

Task 1: Stereo Task 2: Multiview
Pairs per
secondAUC@K◦ AUC@5◦@N

5◦ 10◦ 5 10 25

SP+SuperGlue 58.64 71.07 61.88 78.97 86.75 16.2
SP+LightGlue 59.03 71.13 62.87 79.36 86.98 43.4

DISK+NN+ratio 57.76 68.73 59.91 78.95 87.54 196.7
DISK+LightGlue 67.02 77.82 67.91 80.58 88.35 44.5

Table 7. Structure-from-Motion with the Image Matching Chal-
lenge 2020. We evaluate the stereo track, at multiple error thresh-
olds, and the multi-view track, for various numbers of images N .
LightGlue yields better poses than SuperGlue on the multi-view
track and significantly reduces the matching time. In combination
with DISK, LightGlue improves over SuperPoint+SuperGlue and
DISK+NN+ratio in both tracks by a large margin.

B. Additional results

Relative pose estimation:
Results reported in Section 5.2 were computed with a sub-

set of the MegaDepth dataset [38] as introduced by previous
works [9, 68, 78]. However, the images therein overlap with
the training set of SuperGlue [56], the state-of-the-art sparse
feature matcher and thus our main competitor.

For a more fair evaluation, we perform an extensive out-
door experiment on the test scenes of our MegaDepth [38]
split, which covers 4 unique phototourism landmarks that
SuperGlue was not trained with: Sagrada Familia, Lincoln
Memorial Statue, London Castle, and the British Museum.
To balance the difficulty of image pairs, we bin pairs into
three categories based on their visual overlap score [19, 56],
with intervals [10, 30]%, [30, 50]%, and [50, 70]%. We sam-
ple 150 image pairs per bin per scene, totaling 1800 image
pairs. We carefully rerun the experiment with the same setup
that was used in Table 2. We report the precision as the
ratio of matches with an epipolar error below 3px. With
SIFT [41], we evaluate the ratio test and SGMNet [8] only,
as the original SuperGlue model is not publicly available.

Table 8 confirms that LightGlue predicts more accurate
correspondences than existing sparse matchers, at a fraction
of the time. Detector-free feature matchers like LoFTR re-
main state-of-the-art on this task, although by a mere 2%
AUC@5° with LO-RANSAC.

Outdoor visual localization: For completeness, we also
report results on the Aachen v1.1 dataset [59] and compare
our method to recent sparse and dense baselines. Table 9
shows that all methods perform similarly on this dataset,
which is largely saturated, with insignificant variations in the
results. LightGlue is however far faster than all approaches.

Indoor visual localization on InLoc: We report results for
InLoc in Table 10. We use hloc and run SuperGlue again
for fairness. For LoFTR and ASpanFormer, report existing
results as no code is available. LightGlue is competitive
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features + matcher #matches P
pose estimation AUC time

(ms)@5◦ @10◦ @20◦

de
ns

e LoFTR 2231 89.8 66.4 79.1 87.6 181
MatchFormer 2416 91.2 65.2 78.1 87.4 388
ASPanFormer 4299 94.7 68.0 80.4 88.7 239

SI
FT

NN+ratio 160 82.3 48.3 62.2 73.2 5.7
SGMNet 405 82.5 50.7 66.6 76.5 71.7
LightGlue 383 84.1 57.0 71.3 81.8 44.3

Su
pe

rP
oi

nt NN+mutual 697 49.4 37.7 50.9 62.3 5.6
SuperGlue 712 93.0 64.8 77.5 86.6 70.0
SGMNet 725 89.8 61.7 74.3 83.4 74.0
LightGlue 709 94.5 65.5 77.8 86.9 44.2

Table 8. Relative pose estimation on Megadepth-1800. This split
is different from Table 2. In contrast to the split used by previous
works [38, 68], this set of test images avoids training overlap with
SuperGlue [56]. LightGlue predicts a similar amount of correspon-
dences but with higher precision (P), pose accuracy (AUC), and
speed than existing sparse matchers. It is competitive with dense
matchers for a fraction of the inference time.

features +
matcher

Day Night pairs per
second(0.25m,2°) / (0.5m,5°) / (1.0m,10°)

LoFTR 88.7 / 95.6 / 99.0 78.5 / 90.6 / 99.0 -
ASpanFormer 89.4 / 95.6 / 99.0 77.5 / 91.6 / 99.5 -

SP+SuperGlue 89.8 / 96.1 / 99.4 77.0 / 90.6 / 100 6.4
SP+LightGlue 90.2 / 96.0 / 99.4 77.0 / 91.1 / 100 17.3

Table 9. Outdoor visual localization on Aachen v1.1. LightGlue
achieves similar accuracy with higher throughput.

features +
matcher

DUC1 DUC2

(0.25m,10°) / (0.5m,10°) / (1.0m,10°)

LoFTR 47.5 / 72.2 / 84.8 54.2 / 74.8 / 85.5
MatchFormer 46.5 / 73.2 / 85.9 55.7 / 71.8 / 81.7
ASpanFormer 51.5 / 73.7 / 86.4 55.0 / 74.0 / 81.7

SP+SuperGlue 47.0 / 69.2 / 79.8 53.4 / 77.1 / 80.9
SP+LightGlue 49.0 / 68.2 / 79.3 55.0 / 74.8 / 79.4

Table 10. Indoor visual localization on InLoc. LightGlue performs
similarly to SuperGlue (within the variability of the dataset).

with SuperGlue and more accurate at (0.25m,10°). Differ-
ences of <2% are insignificant because each split only has
205/151 queries (1.5% of difference ≡ 3 queries). Failures
of LightGlue over SuperGlue (6/356 images @1m) are due
to more matches on repeated objects (like trash cans), i.e. to
better matching and weak retrieval – we show an example in
Figure 8.

Large-scale visual localization on LaMAR: We perform
another experiment on large-scale visual localization on the
LaMAR dataset [57]. The benchmark evaluates single-image
localization with queries from two devices (HoloLens2,
Phone) on 3 scenes (indoor+outdoor), with strong illumina-
tion and viewpoint changes. We use hloc [55] and compare
our method against SuperGlue [56]. For mapping, we use

Figure 8. Failure cases on InLoc [70]. LightGlue sometimes
matches repeated objects in the scene with strong texture, instead
of the geometric structure.

SuperPoint
+ matcher # pairs

HoloLens2 Phone seconds per
query(0.1m, 1.0°) / (1.0m, 5.0°)

SuperGlue 10 67.13 / 81.31 58.53 / 75.68 0.44
LightGlue 10 67.17 / 80.65 58.12 / 75.32 0.13
LightGlue 30 70.53 / 83.38 63.93 / 79.32 0.39

Table 11. Large-scale visual localization on LaMAR. We eval-
uate on the validation set of LaMAR [57], and report the pose
recall under two thresholds and with two capture devices. Both on
HoloLens2 and Phone, LightGlue achieves similar accuracy to Su-
perGlue, but much faster. By equalizing localization time through
more retrieval pairs, LightGlue achieves state-of-the-art on this
benchmark.

top-10 image retrieval for all methods. To illustrate the impor-
tance of matching speed in visual localization, we perform
an additional experiment with LightGlue where we equalize
the localization time by increasing the number of matched
pairs between query and database images. The results on
the validation set of LaMAR are reported in Table 10. Light-
Glue and SuperGlue achieve similar localization accuracy
with the same setup, but LightGlue is almost 4x faster. By
increasing the retrieval pairs from 10 to 30 per query image,
LightGlue outperforms SuperGlue in both devices and under
all thresholds.

C. Implementation details
C.1. Architecture

Positional Encoding. 2D image coordinates are normalized
to a range [-1, 1] while retaining the image aspect ratio. We
then project 2D coordinates into frequencies with a linear
projection Wp ∈ R2d/2h, where h is the number of attention
heads. We cache the result for all layers. We follow the
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efficient scheme of Roformer [67] to apply the rotations to
query and key embeddings during self-attention, avoiding
quadratic complexity to compute relative positional bias. We
do not apply any positional encoding during cross-attention,
but let the network learn spatial patterns by aggregating
context within each image.

The proposed rotary encoding allows the network to at-
tend to different frequencies, enabling the network to learn
complex spatial patterns even under non-equivariant trans-
formations. We believe that learning a positional encoding
based on epipolar or 3D geometry in the cross-attention step
could further improve the robustness of the method. This
could be an exciting research direction in future work.

Graph Neural Network: The graph neural network consists
of 9 transformer layers with both a self- and cross-attention
unit. The update MLP (Eq. 1) has a single hidden layer of di-
mension dh = 2d followed by LayerNorm, GeLU activation
and a linear projection (2d, d) with bias.

Each attention unit has three projection matrices for
query, key and value, plus an additional linear projection that
merges the multi-head output. In bidirectional cross atten-
tion, the projections for query and key are shared. In practice
we use an efficient self-attention [14] which optimizes IO
complexity of the attention aggregation. This could also be
extended for bidirectional cross attention. While training
we use gradient checkpointing to significantly reduce the
required VRAM.

Correspondences: The linear layers (Eq. 6) map from d to
d and are not shared across layers. For all experiments we
use the mutual check and a filter threshold τ = 0.1.

Confidence classifier: The classifier predicts the confidence
with a linear layer followed by a sigmoid activation. Con-
fidences are predicted for each keypoint and only at layers
1, .., L− 1, since, by definition, the confidences of the final
layer L are 1. Each prediction is supervised with a binary
cross-entropy loss and its gradients are not propagated into
the states to avoid impacting the matching accuracy. The
state already encodes sufficient information since it is also
supervised for matchability prediction.

Exit criterion and point pruning: During training we ob-
served that the confidence predictions are less accurate in
earlier layers. We therefore exponentially decay the confi-
dence threshold:

λl = 0.8 + 0.1e−4ℓ/L . (12)

A state is deemed confident if cℓi > λℓ. During inference, we
halt the network if α=95% of states are deemed confident.

For point pruning, a point is deemed unmatchable when
its predicted confidence is high and its matchability is low:

unmatchable(i) = cli > λℓ & σℓ
i < β (13)

Method #matches P
pose estimation AUC time

(%)@5◦ @10◦ @20◦

SP+LightGlue 613 96.2 66.7 79.3 87.9 100.0
ë layer 7/9 705 96.0 66.2 79.1 88.0 82.4
ë layer 5/9 702 94.5 65.0 77.8 87.0 60.0
ë layer 3/9 687 90.0 64.0 76.7 85.8 41.9

ë confidence 98% 610 96.2 66.6 79.3 88.0 80.5
ë confidence 95% 608 95.4 66.3 79.0 87.9 70.6
ë confidence 90% 607 94.5 65.9 78.5 87.2 61.5
ë confidence 80% 605 92.6 65.2 77.8 86.7 48.4

Table 12. Evaluation of early-stopping on MegaDepth. Matches
predicted by deeper layers are more accurate but require more
computations with a higher inference time. Modeling confidences
adaptively selects the model depth that yields a sufficient accuracy.
A more conservative stopping, with a higher threshold α, yields a
higher accuracy at the cost of higher inference time. α=95% yields
the best trade-off.

1 2 3 4 5 6 7 8
0

10

20

30

40

50
Detected negatives (%) after n layers

layer

Figure 9. Continuous detection of unmatchable points. After just
a few layers the network detects many points which are unmatch-
able, and we exclude them from context aggregation.

We report an ablation on the exit confidence α in Table 12
for relative pose estimation on MegaDepth. Lowering α to
80% reduces the inference time by almost 50% compared
to our full model, while maintaining competitive accuracy
compared to SuperGlue on this task. Reducing the confi-
dence threshold is far more effective in terms of run time -
accuracy tradeoff than trimming the model to fewer layers.
Stopping the network early mainly sacrifices precision. For
our experiments we chose 95% confidence, which yields
on average 25% run time reduction with hardly any loss of
accuracy on downstream tasks.

Here, β = 0.01 is a threshold on how matchable a point
is. If Eq. 13 holds, we exclude the point from context ag-
gregation in the following layers. This adds an overhead of
gather and scatter per layer, but pruning becomes increas-
ingly effective with more keypoints.

In Figure 9 we report the fraction of keypoints excluded
in each layer. After just a few layers of context aggrega-
tion, LightGlue is confident to exclude > 30% of keypoints
early on. Since the number of keypoints have a quadratic
impact on run time, as shown in Fig. 7, this can largely re-
duce the number of computations in a forward pass and thus
significantly reduce inference time.
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C.2. Local features

We train LightGlue with three popular local feature de-
tectors and descriptors: SuperPoint [16], SIFT [41] and
DISK [73]. During training and evaluation, we discard the
detection threshold for all methods and use the top-k key-
points according to the detection score. During training, if
there are less than k detections available, we append random
detections and descriptors. For SIFT [41] and DISK [73],
we add a linear layer to project descriptors to d=256 before
feeding them to the Transformer backbone.

SuperPoint: SuperPoint is a popular feature detector which
produces highly repeatable points located at distinctive re-
gions. We use the official, open-sourced version of Su-
perPoint from MagicLeap [16]. The detections are pixel-
accurate, i.e. the keypoint localization accuracy depends on
the image resolution.

SIFT: We use the excellent implementation of SIFT from
vlfeat [75] when training on MegaDepth, and SIFTGPU
from COLMAP [60] for fast feature extraction when pre-
training on homographies. We observed that these imple-
mentations are largely equivalent during training and can be
exchanged freely. Also, SIFT features from OpenCV can be
used without retraining. Orientation and scale are not used
in positional encoding.

DISK: DISK learns detection and description with a rein-
forcement learning objective. Its descriptors are more pow-
erful than SIFT and SuperPoint and its detections are more
repeatable, especially under large viewpoint and illumination
changes.

C.3. Homography pre-training

Following Sarlin et al. [56], we first pre-train LightGlue
on synthetic homographies of real-images.

Dataset: We use 170k images from the Oxford-Paris 1M
distractors dataset [50], and split them into 150k/10k/10k
images for training/validation/test.

Homography sampling: We generate homographies by
randomly sampling four image corners. We split the image
into four quarters, and sample a random point in each quarter.
To avoid degenerates, we enforce that the enclosed area is
convex. After, we apply random rotations and translations
to the corners s.t. the corners remain inside the image. With
this process, we can generate extreme perspective changes
while avoiding border artifacts. This process is repeated
twice, resulting in two largely skewed homographies. In
interpolation, we then enforce the extracted images to be of
size 640x480.

Photometric augmentation: The color images are then
forwarded through a sequence of strong photometric aug-
mentations, including blur, hue, saturation, sharpness, illu-
mination, gamma and noise. Furthermore, we add random

Figure 10. Examples of synthetic homographies. We show the
original images (left) and two augmented examples (center and
right) resulting from strong perspective transformations and ex-
treme photometric augmentations.

additive shades into the image to simulate occlusions and
non-uniform illumination changes.

Supervision: Correspondences with 3px symmetric repro-
jection error are deemed inliers, and points without any cor-
respondence under this threshold are outliers.

Training details: We extract 512/1024/1024 keypoints for
SuperPoint/SIFT/DISK, and a batch size of 64. The initial
learning rate is 0.0001, and we multiply the learning rate by
0.8 each epoch after 20 epochs. We stop the training after
40 epochs (6M image pairs), or 2 days with 2 Nvidia RTX
3090 (for SuperPoint). Our network achieves > 99% recall
and > 90% precision on the validation and test set. We also
observed that, for fine-tuning, one can stop the pre-training
after just one day with only minor losses.

We also experimented with sampling images from
MegaDepth [38] for homography pre-training, and could
not observe major differences. Strong photometric augmen-
tations and perspective changes are crucial for training a
robust model.

C.4. Finetuning on MegaDepth

We fine-tune our model on phototourism images with
pseudo ground-truth camera poses and depth images.

Dataset: We use the MegaDepth dataset [38], which
contains dense reconstructions of a large variety of pop-
ular landmarks all around the globe, obtained through
COLMAP+MVS [60, 61]. Following Sun et al. [68], we bin
each pair by its covisibility score [19], into ranges [0.1, 0.3],
[0.3, 0.5] and [0.5, 0.7]. Scenes which are part of the valida-
tion and test set in the image matching challenge [26] are
also excluded from training, resulting in 368/5/24 scenes for
training/validation/test. At the beginning of each epoch, we
sample 100 image pairs per scene.

Images are resized s.t. their larger edge is of size 1024,
and zero-pad images to 1024×1024 resolution.

Supervision: Following SuperGlue [56], we reproject points
using camera poses and depth to the other image. Correspon-
dences with a maximum reprojection error of 3 pixels and
which are mutually closest are labelled as inliers. A point
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where the closest correspondence has a reprojection error
larger than 5px are is labelled as outlier. Furthermore, we
also declare points without depth and no correspondence
with a Sampson Error smaller than 3 px outliers.

Training details: Weights are initialized from the pre-
trained model on homographies, Training starts with a learn-
ing rate of 1e-4 for 20 epochs and we exponentially decay
it by a factor of 10 over 10 epochs, and stop training after
40 epochs (2 days on 2 RTX 3090). The top 2048 keypoints
are extracted per image, and we use a batch size of 32. To
speed-up training, we cache detections and descriptors per
image, requiring around 200 GB of disk space.

C.5. Homography estimation

We validate the models capabilities on real homographies
on the Hpatches dataset [2]. We follow the setup introduced
in LoFTR [68] and resize images to a maximum edge length
of 480.

For SuperPoint we extract the top 1024 keypoints with
the highest detection score, and report precision (fraction
of matches within 3px homography error) and recall (frac-
tion of recovered mutual nearest-neighbour matches within
3px homography error). For LoFTR we only report epipolar
precision. Furthermore, we evaluate the models in the down-
stream task of homography matrix estimation. Following
SuperGlue [56], we report pose estimation results from ro-
bust estimation using RANSAC/MAGSAC [3] and the least
squares solution with the weighted DLT algorithm. We eval-
uate the accuracy of estimated homography by their mean
absolute corner distance towards the ground-truth homogra-
phy.

We use OpenCV with USAC MAGSAC for robust ho-
mography estimation, and tune the threshold for each method
separately. Our reasoning behind this decision, which is
in contrast to previous works in feature matching [56, 68]
which fix the RANSAC parameters, is that we mainly use
RANSAC as a tool to evaluate the low-level matches on
a downstream task, and we want to minimize the varia-
tions introduced by its hyperparameters in order to obtain
fair and representative evaluations. Different matches typi-
cally require different RANSAC thresholds, and thus a fixed
threshold is suboptimal for comparison. For example on out-
door relative pose estimation, tuning the RANSAC threshold
yields +7% AUC@5◦on SuperGlue, skewing the reported
numbers.

D. Timings

All experiments were conducted on a single RTX 3080
with 10GB VRAM. We report the timings of the matching
process only, excluding sparse feature extraction (which is
linear in the number of images) and robust pose estimation.
We report the average over the respective datasets.
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Figure 11. Run time breakdown. We evluate the runtime of self-,
cross- and partial assignment layers on 1024 keypoints for Super-
Glue and LightGlue. Most of LightGlue’s default inference time
improvements stem from a significantly faster partial assignment
layer and reuse of computations in bidirectional cross-attention.

In Figure 11 we benchmark self-/cross-attention and solv-
ing the partial assignment problem against the respective
counterparts in SuperGlue [56]. Bidirectional cross-attention
reduces the run-time by 33% by only computing the simi-
larity matrix once. However, the main bottleneck remains
computing the softmax over both directions.

Our cheap double-softmax and the unary matchability
predictions are significantly faster than solving it using op-
timal transport [66, 48], where 100 iterations are required
during training to maintain stability.

In practice, we also use efficient self-attention [14] and
mixed-precision to significantly reduce run time and memory
requirements. However, for a fair comparison, we exclude
these performance improvements from all experiments ex-
cept where explicitly stated otherwise.

E. Qualitative Results
Figure 12 shows how LightGlue discards un-

matched points and its early stopping mechanism on
easy/medium/hard pairs. Figure 13 illustrates the matching
output for LightGlue with SIFT [41], SuperPoint [16] and
DISK [73] on some qualitative examples.
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Point pruning Matchability Matches

Figure 12. Visualization of adaptive depth and width. From top to bottom, we show three easy, medium and difficult image pairs. The
left column shows how LightGlue reduces its width: it finds out early that some points (•) are unmatchable (mostly by visual overlap) and
discards non-repeatable points in later layers: • → • → •. This is very effective on difficult pairs. LightGlue looks for matches only in
the reduced search space (•). The matchability scores (middle column, from non-matchable • to likely matchable •), help find accurate
correspondences and are almost binary. On the right we visualize predicted matches as epipolar in- or outliers. We report the run time and
stopping layer for each pair. On easy samples, LightGlue stops after only 2-3 layers, running with close to 100 FPS.
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SIFT+LightGlue SuperPoint+LightGlue DISK+LightGlue

Figure 13. Comparison of features produced by LightGlue for different local features. We compare the outputs of SIFT+LightGlue
(left), SuperPoint+LightGlue (middle) and DISK+LightGlue (right).
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