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A. Additional Methods

A.1. Prototype Box Selection

This method involves selecting the most representative
boxes, as prototypes, from the current training data, which
are then replayed along with the future training data. The
memory buffer is commonly denoted as Bt, where t rep-
resents the current task and the size M of Bt is limited.
Therefore, the selection is an important factor that affects
the performance. We employ a frozen trained model to
generate the Region of Interest (RoI)-Aligned feature maps
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The distance between each feature map F t
g and the proto-

type feature map F̂ t
c for class c is computed using the Eu-

clidean distance:
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Then we sort {d(F t
g , F̂

t
c ),∀cg = c}G

t
n

g=1 in ascending or-
der, and select the top Mc = M

|C1:t| boxes for that class to
form the box buffer Bt

c. The final Bt can focus on the most
relevant information for each task and avoid redundant or
irrelevant information, as shown in Algorithm 1.

Additionally, since boxes are typically smaller than
whole images, the computational cost of training and re-
hearsal can be reduced, making the approach more scalable
to large datasets and complex models. The entire flow of
our proposed method is shown in Algorithm 2.

Algorithm 1 Prototype Box Selection (PBR)

Input: The frozen trained model in fθt(·), the stream data
Dt at current task t, each image Itn has Gt

n groundtruth
labels {yg}

Gt
n

g=1, the box rehearsal memory Bt−1 after
task t − 1, the box rehearsal memory size M , the seen
classes C1:t until task t.

Output: The updated Bt after task t.
1: Initialize: Bt = {}, mt = ceil(M/|C1:t|);
2: F t

g = fθt(I
t
n, yg), ∀n ∈ N t, ∀g ∈ Gt

n;
3: bg = crop(Itn, yg), ∀n ∈ N t, ∀g ∈ Gt

n;
4: for c in C1:t do
5: if c ∈ Ct then
6: Compute F̂ t

c for each class c based on Eq. 8;
7: Dc = {(bg, yg) | cg = c};
8: Sort Dc following Eq. 9;
9: Bt+ = Dc[0 : mt];

10: else
11: for j = 1, 2, ...,mt do
12: i = j ∗

∣∣Bt−1
c

∣∣ /ceil(M/|C1:t−1|);
13: Bt+ = Bt−1

c [i];
14: end for
15: end if
16: end for

B. Additional Analysis

B.1. Analysis foreground shift problem

In Table 1 and Table 2, our algorithm demonstrates a re-
markable improvement in mean Average Precision (mAP)
ranging from 0.2∼20% across all categories. Additionally,
it exhibits a substantial mAP boost of 4.5% to 25.2% in new
categories (foreground categories), indicating the enhanced
stability and plasticity achieved by our method.

Moreover, we conducted a comprehensive analysis of
False Positives (FP) [?] under the VOC 10-10 setting. Fig. 6
visually represents the number of background errors, specif-
ically detections confused with the background or unlabeled



Algorithm 2 Augmented Box Replay Method

Input: fθt−1
(·), Dt={Itn, Gt

n}
Nt
n=1, Bt−1 and Rat=1:1:2.

Output: The updated Bt and fθt(·) after task t.
1: Initialize: θt = θt−1;
2: for n in Nt do
3: MIX,MOS,NEW=GenerateReplayType(Rat);
4: if MIX then
5: Compute Îtn, Ĝ

t
n by MixupBoxReply(Itn, G

t
n);

6: else if MOS then
7: Compute Îtn, Ĝ

t
n by MosaicBoxReply(Itn, G

t
n);

8: else if NEW then
9: {Îtn, Ĝt

n} = {Itn, Gt
n};

10: end if
11: LDis = DistiallationLosses(fθt−1

(·), fθt(·), Îtn);
12: LDet = DetectionLosses(fθt(·), {Îtn, Ĝt

n});
13: Update θt by LDis + LDet;
14: end for
15: Update Bt by PBS(fθt(·), Dt, Bt−1);

Figure 6: False-Positive Analysis

objects. Notably, our approach (ABR) demonstrates a clear
advantage, exhibiting a substantial reduction of 275 errors
in new (foreground) classes compared to the ImageReplay
method. This compelling result strongly suggests the suc-
cessful mitigation of the foreground shift problem by our
proposed approach.

B.2. Analysis Attentive RoI Distillation (ARD)

While existing methods have utilized attention distilla-
tion primarily on feature maps, we advance this approach by
integrating location information of Region of Interest (RoI)
proposals. By doing so, our model gains the capability to
distill both feature and localization information from the re-
played and new objects, leading to an overall performance
enhancement.

Fig. 7 showcases some additional attention maps, high-

(a) Image (b) w/o ARD (c) w ARD

Figure 7: Attention maps during training (person and bicy-
cle are new and old classes respectively).

Figure 8: Impact of the hyperparameters γ, α and β.

lighting how our Attention-based RoI Distillation (ARD)
loss effectively retains attention on the old class (e.g., bicy-
cle). This observation confirms ARD’s competence in alle-
viating catastrophic forgetting, a phenomenon that impacts
model performance when learning new tasks.

Through the inclusion of location-awareness in attention
distillation, our proposed ARD method exemplifies its po-
tential to mitigate catastrophic forgetting and reinforce the
preservation of crucial knowledge from previous tasks, re-
sulting in improved overall model performance.

B.3. Effect of Hyperparameters

We conducted additional experiments under the VOC
10-10 setting to analyze the impact of all hyperparameters
in our study, as depicted in Fig. 8. For γ in Eq. 5 of the
overall ARD loss function, we vary it in range [0.5, 1.0,
5.0]. From the results shown in the first figure of Fig. 8, we
find that the default γ = 1 provides good results.

In consequence, we optimize the total objective function
to realize incremental object detecion learning:

Ltotal = Lfaster rcnn + αLID + βLARD (10)

where α and β weight for the Inclusive Distillation Loss and
Attentive RoI Distillation, respectively. We vary it in range
[0.1, 0.2, 0.5, 1]. The performance varies as a function of
α, β outperforming the state-of-the-art (66.8) for most com-
binations.

C. Additional Results
C.1. Detailed Results for the Long Sequences

In Table 7, we present the results of our experiments with
long sequences on the PASCAL-VOC 2007 dataset. To sim-
ulate this scenario, we trained our detector on images from



Table 7: Per-Class AP@50 and Overall mAP@50 values in different task on PASCAL-VOC 2007 5-5 setting.

Class Split Method aero cycle bird boat bottle bus car cat chair cow mAP-task1 table dog horse bike person mAP-task2 plant sheep sofa train tv mAP-task3 mAP-total

1-20 JT 72.7 81.0 76.0 58.9 62.0 76.4 87.4 85.7 72.6 82.4 75.5 57.7 83.2 85.7 80.5 84.2 78.3 45.8 77.1 65.9 75.7 74.5 67.8 74.3

(1-5)+6-10 MMA 73.8 80.8 71.2 52.5 63.3 55.2 74.9 65.2 39.1 73.3 64.9 64.9
ABR 71.7 82.6 69.5 53.6 63.8 63.0 79.0 68.5 47.0 78.4 67.7 67.7

(1-10)+11-15 MMA 67.4 78.1 64.5 49.7 63.5 23.1 34.5 26.3 8.7 35.0 45.1 47.5 52.8 67.5 65.9 76.0 61.9 50.7
ABR 68.5 79.6 67.3 51.9 56.7 60.2 75.2 62.8 38.6 62.0 62.3 54.0 66.3 76.9 74.5 77.3 69.8 64.8

(1-15)+16-20 MMA 72.3 75.5 57.0 46.9 59.9 4.8 32.4 38.5 3.3 1.4 39.2 0.7 28.8 42.2 44.1 18.2 26.8 36.0 46.5 52.0 52.0 66.6 50.6 38.9
ABR 69.3 80.0 65.6 53.9 54.6 52.2 75.5 69.4 34.3 69.6 62.4 22.9 41.8 48.7 53.7 60.8 45.6 39.6 71.3 59.2 76.1 70.4 63.3 58.4

the first 5 classes and gradually added classes 6 to 20 in
groups of five.

The table shows the class-wise average precision
(AP)@0.5 and the corresponding mean average precision
(mAP). The first row (JT) represents the upper-bound where
the detector is trained on data from all 20 classes. The
subsequent three pairs of rows demonstrate the results ob-
tained when adding five new classes at a time. The nota-
tion (1-5)+6..10 is used to represent this setting. Our pro-
posed ABR method outperforms the previous state-of-the-
art method MMA [?] on all sequential tasks, as can be seen
from the results in Table 7. Therefore, the ABR method can
be more useful in real-world scenarios where new object
classes are frequently introduced. Additionally, the ABR
method is a novel approach that may have implications for
future research in object detection.

C.2. Visualization

The inference results are presented in Fig. 9, which
demonstrate the effectiveness of our proposed ABR method
in avoiding the forgetting of previous classes and improv-
ing adaptation to new classes. In the first two rows, our
method is capable of accurately distinguishing new classes
from similar classes in the previous classes, as seen in the
detection of a bus in the first row of images and a cow in the
second row of images. However, the popular MMA method
misclassifies the bus as a train or bus and the cow as a dog
or cow. In the third row, our algorithm successfully detects
the new class, a dining table, while also accurately locat-
ing a previous class, a chair. In comparison to the MMA
method, our method achieves more precise position detec-
tion, as demonstrated in the last two rows where person and
boat are detected.

Overall, these results suggest that the proposed ABR
method can more effectively handle the problem of incre-
mental learning in object detection tasks, particularly in sce-
narios where new classes are similar to previous ones. The
ability to avoid forgetting and adapt to new classes is crucial
for practical applications, and the improved performance of
our method is promising for future research in this area.



(a) Image (b) GT (c) MMA (d) Ours

Figure 9: Visualization of the inference results in MMA and Ours for 8 test images on PASCAL-VOC 2007 10-10 scenario.


