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The content of this supplementary material is organized
as follows:

• Difference between our proposed UNIC model and
Zhong et al. [10] in Sec. s1.

• Details of the model architecture in Sec. s2.

• Details of the learning objective in Sec. s3.

• Details of our proposed datasets for unbounded image
composition in Sec. s4.

• Details of the evaluation metrics in Sec. s5.

• Additional qualitative results Sec. s6.

s1. Difference with Zhong et al. [10]
Since both our UNIC model and Zhong et al. [10] can

give image composition results not fully lie in the camera
view, we compare our UNIC with Zhong et al. [10] to show
the difference. The working schemes of the two methods
are given in Fig. s1.

Suitable Scenarios. As one can see, Zhong et al. [10] is de-
signed to improve the composition of already taken images.
On the contrary, our approach provides recommendations to
adjust the camera for obtaining a new camera view, which
is suitable during the photography process.

Authenticity. Since Zhong et al. [10] extrapolate the given
image via out-painting methods and crop in the extrapolated
image, the results may contain unrealistic out-painted ar-
eas, which affects the image quality of the final results. Our
method instead guarantees that the final results are real im-
ages, and there are no concerns about authenticity.

Flexibility. Zhong et al. [10] highly rely on the already cap-
tured image, therefore the solution is greatly limited by the
image out-painting methods. Executing their method mul-
tiple times will lead to a certain result, leaving no chance to
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Figure s1. Pipeline of Zhong et al. [10] and Our UNIC. The ex-
trapolated areas by Zhong et al. [10] are not real, where obvious
artifacts can be observed. By contrast, our UNIC jointly performs
camera adjustment and image composition.

adjust the image composition by users. Unlike their solu-
tion, our UNIC can be executed iteratively to obtain better
results. Besides, the users can get involved in the photogra-
phy process naturally.

s2. Model Architecture
Our UNIC contains a CNN backbone, a transformer en-

coder, a transformer decoder, and a feature extrapolation
module. The details of the architecture are given as follows.

CNN Backbone. Following [1, 7], we use ResNet-50 [4]
as the backbone network. For the initial image Iinit ∈
R3×H0×W0 , we only use the last-layer feature hinit ex-
tracted by backbone, where hinit ∈ RC×H×W , H =
H0

32 ,W = W0

32 ,C = 2048.

Transformer Encoder. We first employ a 1×1 convolution
to reduce the number of channels of the feature from 2048
to 256. The image features with encoded positional embed-
dings are rearranged into a sequence of feature tokens that
can be fed into the encoder. The encoder is composed of
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Figure s2. Illustrating the first layer of FEM. Later layers take the
output of the previous layer as input.

six standard transform blocks including a multi-head self-
attention module and a feed-forward network (FFN), where
the query and key are provided by different feature tokens.

Feature Extrapolation Module (FEM). The FEM is a
stack of decoder layers to predict the padded features con-
ditioned on visible ones. The query is initialized by a learn-
able variable m and is transformed into padded features
Zpad by multiple decoder layers and a feed-forward net-
work. The detailed structure of the decoder layer of FEM is
illustrated in Fig. s2. In each decoder layer, apart from self-
attention between different padded feature embeddings, we
also calculate cross-attention between visible features and
padded features to utilize the visible information to learn
feature extrapolation. The key and value for cross attention
consist of visible features Zvis and the output of the self-
attention layer.

Transformer Decoder. A group of learnable anchors are
transformed into output embeddings by the decoder and are
futher converted into bounding boxes and their correspond-
ing confidence labels by two heads. The decoder is standard
architecture of the transformer, which perform through mul-
tiple multihead self-attention between different decoder em-
beddings to remove redundant boxes and and cross attention
aggregating image information to predict the boxes.

s3. Learning Objective

Unbounded Regression on Set Prediction. Our network
predicts a set of N bounding boxes, but the number of pre-
dicted boxes is not consistent with the number of ground
truth views N gt (typically N gt ≪ N ). Following [1, 5, 7],
we use set prediction to compute the loss in a reasonable

way. First, we pad the ground truth set of views with ∅
(invalid view) to a set of size N as follows:{{

ci = [x , y ,w , h] ,pi = 1
}
, 1 ≤ i ≤ Ngt{

ci = ∅,pi = 0
}
, Ngt + 1 ≤ i ≤ N

,

(s1)
then we use a bipartite matching to find an one-to-one index
mapping σ ∈ SN for these two set to minimize the match-
ing cost Lcomp which is the same as the loss function,1

σ∗ = argmin
σ∈SN

N∑
i

Lcomp

(
{cσ(i)pred ,p

σ(i)
pred}, {c

i ,pi}
)
.

(s2)
Those predicted views having a matching with ground-

truth valid views (i.e., ci ̸= ∅) contribute to the regression
loss, IoU loss, and focal loss (with pi = 1). For other views
without a valid matching (i.e., ci = ∅), they only contribute
to the focal loss (with pi = 0). With the above definitions,
the loss function of our UNIC can be rewritten as

Lcomp =

N∑
i=1

fbool(ci ̸= ∅)Lreg(c
σ∗(i)
pred , ci)+

fbool(ci ̸= ∅)λIoULIoU(c
σ∗(i)
pred , ci)+

λfocalLfocal(p
σ∗(i)
pred ,pi),

(s3)

where fbool(∗) equals to 1 when the condition ∗ is satisfied
otherwise 0.

Smooth Label. It is worth noting that N gt is typically much
smaller than N , therefore, the invalid views whose pi = 1
have major contributions to Lfocal in Eqn. (s3). To remedy
this problem, Jia et al. [5] have proposed two strategies to
smooth the labels for invalid views, i.e., quality guidance
and self-distillation. The quality guidance strategy is more
feasible for densely annotated datasets (e.g., GAICD [9]),
which uses the annotated quality score to get the smooth la-
bels of invalid views. For a predicted invalid view, we cal-
culate the IoU between the view and all labeled views, and
regard the quality score of maximum-IoU neighbor view as
the quality score of the predicted box. Then we can map the
quality score to the soft labels by a linear function. As for
the self-distillation strategy, the smooth labels are generated
by the model whose parameters are exponential moving av-
erages (EMA) of the model parameters. Jia et al. [5] use
these strategies for GAICD and CPC, respectively.

In this paper, we argue that, at the beginning of the train-
ing process, the model is not well trained, thus the self-
distillation strategy is unable to generate stable smooth la-
bels. On the contrary, at the later phase of the training pro-
cess, most predicted views have decent quality but are un-
able to match with limited ground-truths, forcing pi to 0 or

1More intuitively, we can regard σ as a shuffle operation, and SN is all
shuffle solutions. We aim to find a shuffle solution σ∗ such that the loss
Lcomp is minimized.



Figure s3. Some sample images from our datasets. The left is the full-view image from the GAICD [9], and the right is the image from our
dataset. The ground-truth views are circled by the red box

a manually set label is unreasonable. Therefore, we propose
to combine these two strategies based on our observations,
and adopt the quality guidance strategy at first, then switch
to the self-distillation strategy afterward.

Loss Terms. We employ the learning objective for com-
position including a regression loss Lreg and a generalized
IoU loss LIoU for bounding box regression, and a focal loss
Lfocal for predicting the confidence.

Lcomp = Lreg(cpred , c) + λIoULIoU(cpred , c)

+ λfocalLfocal(ppred ,p).
(s4)

The regression loss is defined as an ℓ1 loss to supervise
cpred , i.e., a four-dimensional vector consisting of the box
center coordinates and its height and width, i.e.,

Lreg(cpred , c) = ∥cpred − c∥1, (s5)

while the IoU loss is defined by,

LIoU(cpred , c) = 1−
(
|cpred ∩ c|
|cpred ∪ c|

− |cc − cpred ∪ c|
|cc |

)
,

(s6)
where | · | means area, and cc is the smallest enclosing con-
vex object for cpred and c. And the focal loss is,

Lfocal(ppred ,p) = −|ppred − p|β

((1− ppred) log(1− p) + ppred log(p)),
(s7)

where β = 2.

s4. Unbounded Image Composition Dataset
We construct the unbounded image composition (UIC)

dataset based on the existing datasets (i.e., GAICD [9],
CPC [8] & FLMS [3]). In our UIC dataset, the ground-truth
composition may not fully lie in the range of the image, and
the rules for generating the dataset are given in the main
manuscript. Some examples of the UIC dataset are shown
in Fig. s3.

s5. Evaluation Metrics

In this section, we provide the formulations of the evalu-
ation metrics used in our paper, i.e., AccK/N , IoU, and Disp.

AccK/N is the accuracy (or ratio) of predicted K views
fall into the N ground-truth views. In specific, for image i ,
we define the set of annotated views with the top N of qual-
ity score as C i

N =
{
ci1, . . . , cij , . . . , ciN

}
. And a model

returns K views with the highest confidence scores denoted
by cikpred . Then AccK/N can be defined by

AccK/N =
1

TK

T∑
i=1

K∑
k=1

fbool( max
cij∈Bi

N

{
IoU

(
cikpred , c

ij
)}

≥ ϵ),

(s8)
where ϵ ∈ {0.90, 0.85}, fbool(∗) equals to 1 when the con-
dition ∗ is satisfied otherwise 0.

The boundary displacement error (Disp.) is defined by

Disp =
1

4

∑
j

∥bj
pred − bj∥1 (s9)

where b denotes all boundaries of the bounding box, and
bj is the normalized coordinate of that boundary (e.g., the
x-axis of the left and right boundary). Finally, the IoU is
defined by,

IoU =
|cpred ∩ c|
|cpred ∪ c|

. (s10)

s6. Additional qualitative results.

In Fig. s4, we present the visualization comparison with
other existing cropping methods on FLMS [3] dataset.
Meanwhile, we give additional visualization results in
Fig. s5 on GAICD [9] dataset. And it can be seen that
our method usually produces more appealing results by un-
bounded image composition.



Input VFN [2] GAIC [9] CGS [6] Zhong et al. [10] Jia et al. [5] Ours

Figure s4. Qualitative comparison with other methods on FLMS [3] dataset.
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Figure s5. Qualitative comparison with other methods on GAICD [9] dataset.
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