
Bird’s-Eye-View Scene Graph for Vision-Language Navigation
Supplementary Material

Rui Liu Xiaohan Wang Wenguan Wang* Yi Yang
ReLER, CCAI, Zhejiang University

https://github.com/DefaultRui/BEV-Scene-Graph

This document provides more details of our approach
and additional experimental results, which are organized
as follows:

• Model details (§A)

• Experimental setups (§B)

• Additional results and visualization (§C)

• Additional analysis of Matterport3D2 (§D)

• Discussion (§E)

A. Model Details
In our model, BEV Scene Graph (BSG) is proposed to

enable discriminative decision space based on BEV feature.

However, to align with the discrete environments present

in the VLN simulator [1, 2], it is necessary to convert the

action space into nodes (Fig. A1). Consequently, BSG can

serve as a valuable complement to existing works [3–5] that

focus on panoramic decision space (c.f . §A.2). Specifically,

our approach incorporates a panoramic branch [5] . We will

give more details on how to train this combined model in

§A.4.

A.1. Different Decision Space

Low-level Decision Space. The early research [1] em-

ployed a low-level visuomotor control, which constrained

the action space to six actions corresponding to left, right,

up, down, forward, and stop. Specifically, the forward ac-

tion means the agent need to move to the closest reachable

viewpoint. The left, right, up and down actions are defined

to move the camera by 30 degrees. Nonetheless, such a vi-

suomotor control posed challenges for the agent to follow

instructions accurately and required the agent to memorize

extensive sequential inputs.

Panoramic Decision Space. To enable high-level action

reasoning, panoramic decision space [6] involves discretiz-

ing panoramic view of the surrounding environment into
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Figure A1: Integrating our framework with previous approaches.

36 view angles (12 headings × 3 elevations with 30 de-

gree intervals). At each location, the agent is limited to a

few navigable directions that correspond to these panoramic

views. Most existing works [1, 5–9] adopt this decision

space. However, due to the adjacency rule, multiple can-

didate nodes may correspond to the same panoramic view,

resulting in ambiguity during route planning.

BEV Grid Decision Space. To address the aforementioned

constraints, we introduce a grid-level decision space from

bird’s eye view. Each candidate node corresponds to spe-

cific BEV grids. The node embedding is represented by its

neighboring grid features (Fig. A1).

A.2. Complementary to Existing Methods

As shown in Fig. A1, our method predicts the next step

action by fusing both global and fine-scale local decision-

making strategies. Specifically, for the topological level,

our model predicts the global score on all the navigable

nodes, including previously visited and observed nodes,

which are similar to previous works [3–5, 10]. Meanwhile,

for the local level, the local score are for all navigable nodes

of the current node, but our model first predicts the BEV

grid-level score in the local level then converts to the score

of navigable nodes to making a more accurate prediction.

Thus, our model can be easily combined with existing work

based on panoramic features as shown in Fig. A1. In this

paper, we explore the complementary nature of our model



with a recent state-of-the-art method [5], which also pre-

dicts the global and local score at each step.

A.3. Detailed Network Architecture on REVERIE

Object Prediction. For REVERIE [2], an agent is required

to identify an object at each step where additional candidate

object annotations are provided. To enable fine-grained per-

ception, we incorporate an object prediction module into lo-

cal branch. Specifically, we adopt the ViT-B/16 pretrained

on ImageNet to extract the features of M objects at t-th
step Ot = {om|om ∈ R

768}Mm=1, and add orientation fea-

ture [5, 7] with sin and cos values for heading and elevation

angles. Then these object features are concatenated with

BEV features as visual features, and we adopt a cross-modal

transformer on visual and textual features to obtain contex-

tual representations. Finally, grid-level decision score and

object score are predicted by FFN.

A.4. Pretraining Objectives

For R2R [1] and R4R [11], we adopt Masked Lan-

guage Modeling (MLM) [12, 13], Masked Region Clas-

sification (MRC) [14–17], and Single-step Action Predic-

tion with Progress Monitoring (SAP-PM) [7–9, 18] as aux-

iliary tasks in the pretraining stage. For REVERIE [2],

an additional Object Grounding (OG) [5, 19] are used for

object reasoning and grounding, and the sample ratio is

MLM:MRC:SAP-PM:OG=1:1:1:1. All the auxiliary tasks

are based on the input pair (X ,Gt, Tt), where X is the

textual embedding, Gt is BSG built at time step t, and

Tt is topological map of complementary method [5] with

panoramic visual feature Vt (c.f . §A.2).

MLM. The task aims to learn grounded language represen-

tations in VLN task and cross-modal alignment. It masks

some percentage of the input tokens at random, and then

predicts those masked tokens based on contextual words

and [13]. We randomly mask out one of the word tokens in

X with the probability of 15% [5, 9], and the final hidden

representations corresponding to the [mask] token are fed

into an output softmax over the instruction vocabulary:

LMLM = − log p(xi|X\i,Gt, Tt), (A1)

where xi is the textual embedding of the masked token, X\i
is the masked instruction. We average output embedding of

two textual encoders of panoramic branch and BEV branch,

and minimize the negative log-likelihood of original words.

MRC. This task predicts the semantic labels of masked ob-

servation features given instructions and neighboring obser-

vations [9]. We only use this task for panoramic branch, and

keep other settings consistent with [5, 9].

SAP-PM. We employs imitation learning to predict the next

action [5, 9, 17]. Specifically, we sample a map-action pair

(Gt, Tt,At) from the groundtruth trajectory at the t-th step,

and then the loss of panoramic branch is as follows:

LSAP =
∑T

t=1
− log p(at|X , Tt). (A2)

For our BEV branch, we employ an additional progress

monitoring task [7, 18] to reflect the navigation progress:

LSAP−PM =
∑T

t=1
− log p(at|X ,Gt) + (ypmt − ppmt )2, (A3)

where ypmt is the normalized distance of length from the

current location to the goal as in Eq.(12). We use a weight

of 0.5 to balance LSAP and LSAP−PM.

OG. The goal of this task is to predict the best matching

object among a set of candidate objects at the current view-

point [5, 19]. The loss is as follows:

LOG = − log p(oi|X ,Gt, Tt), (A4)

where oi is the groundtruth object, and we average the

matching score of panoramic branch and BEV branch.

A.5. Finetuning Objectives

Since reinforcement learning reward makes the agent

pay more attention on shortest paths rather than path fidelity

with instruction [9], we alternatively use Teacher-Forcing

(TF) and Student-Forcing (SF) for action prediction as be-

havior cloning (BC):

LTF =
∑T

t=1
− log p(at|X ,Gt, Tt),

LSF =
∑T

t=1
− log p(a∗t |X ,G∗

t , T ∗
t ),

(A5)

where Gt and Tt are maps built online following the expert

trajectory, G∗
t and T ∗

t are following the sampling trajectory,

and a∗t is supervised by the pseudo interactive demonstrator

in [5, 20]. On REVERIE, the OG loss is also employed for

finetuning, and we adopt a predefined weight α = 0.20 to

balance them:

L = αLTF + LSF + LOG. (A6)

B. Experimental Setups
B.1. Evaluation Metrics

VLN. Following the standard setting [1, 6, 9] of R2R, there

are several metrics for evaluation: (1) Success Rate (SR)

considers the percentage of final positions less than 3 m

away from the goal location. (2) Trajectory Length (TL)

measures the total length of agent trajectories. (3) Ora-

cle Success Rate (OSR) is the success rate if the agent can

stop at the closest point to the goal along its trajectory. (4)

Success rate weighted by Path Length (SPL) is a trade-off

between SR and TL. (5) Navigation Error (NE) refers to

the shortest distance between agent’s final position and the

goal location. For REVERIE [2, 5, 8], there are two addi-

tional metrics. (6) Remote Grounding Success rate (RGS)

is the success rate of finding the target object. (7) Remote

Grounding Success weighted by Path Length (RGSPL) uses

the ratio between the length of the ground-truth path and

the agent’s path to normalize RGS. For R4R [4, 9, 11],

three metrics are used for instruction fidelity. (8) Coverage



weighted by Length Score (CLS) is the product of the path

coverage and length score of the agent’s path with respect

to reference path. (9) Normalized Dynamic Time Warping

(nDTW) and (10) Success rate weighted normalized Dy-

namic Time Warping (SDTW) measure the order consis-

tency of agent trajectories.

B.2. Training Details

VLN. During the pretraining stage, we train the combined

model with a batch size of 32 for 100k iterations. We then

finetune the model with the batch size of 8 for 25k itera-

tions. On REVERIE [2], we select the best epoch by SPL

on val unseen. On R2R and R4R [1, 11], the best model is

selected according to the sum of SR and SPL on val unseen.

For fair comparison, the same synthesize instructions in [5]

by a speaker model [6] are also used for REVERIE.

3D Detection. For BEVFormer [21], a static model without

using history BEV features is used for 3D detection. We

adopt ViT-B/16 [22] pretrained on ImageNet as the back-

bone. The size of the image features are 1280×1024×768,

and we don’t utilize the multi-scale features in previous

work [21, 23, 24]. We train this BEV encoder with detec-

tion head [21, 25] using AdamW with a weight decay of

0.01 for 500 epoches, a learning rate of 1×10−4.

For LSS [26] and BEVDepth [24], we use ResNet-50

as the image backbone and the image size is processed to

256 × 704. We don’t adopt image or BEV data augmenta-

tions. AdamW is used as an optimizer with a learning rate

set to 2×10−4 and batch size set to 48. All experiments are

trained for 24 epochs.

C. Additional Results and Visualization

VLN. To compare the differences between the two datasets,

we also show an example with the same groundtruth path

but different instructions in Fig. C1. It shows that detailed

instructions in R2R provide additional information that en-

ables a more accurate navigation strategy.

3D Detection. Table E2 present the detection results on test
unseen in Matterport3D2. For evaluation, we utilize Aver-

age Precision (AP) and Average Recall (AR) with Intersec-

tion over Union (IoU) thresholds of 0.25 and 0.50, follow-

ing established protocols [27–30]. We find that it has good

detection performance on larger objects, such as “bed” and

‘sofa’ with 0.535 and 0.394 for AP in Table E2. However,

detecting small objects like ‘picture’ and ‘plant’ presents

more difficulty since they are almost flat. The detection per-

formance on Matterport3D2 can be further improved in the

future.

D. Additional Analysis of Matterport3D2

D.1. Detailed Annotation Process

Images of Skybox from Simulator. For each panorama

in original Matterport3D [31], the acquisition equipment

rotates around the direction of gravity to six distinct ori-

entations, stopping at each to acquire three 1280 × 1024
photos from three RGB cameras pointing up, horizontal,

and down, respectively. Consequently, each panorama view

contains 6 × 3 raw images. In the VLN task, most pre-

vious works [2, 5–8] use the split “skybox” images [31]

for panoramic viewing. These “skybox” images are gener-

ated by stitching the raw 6×3 images. Then, Matterport3D

Simulator [1, 6] in the VLN task splits the skybox-based

panoramic view into 12×3 images with the pre-defined size

of 640× 480. However, this approach does not produce an

explicit view transformation matrix.

Raw Camera Images. In order to use accurate camera in-

ternal and external parameters for projection in 3D detec-

tion1, we acquire the six raw color images at each viewpoint

from the horizontal view for Matterport3D2 dataset. Multi-

view perspective images captured by camera can access to

the original transformation matrix. Given the camera pa-

rameters, the resolution of raw camera image is also fixed.

Thus we have to use 1280×1024 resolution. Specifically,

we use the undistorted color images and undistorted camera

parameters.

Oriented Bounding Boxes. Although original dataset [31]

provides the axis-aligned bounding boxes, they do not pro-

vide accurate annotations for 3D detection. Thus, to con-

form with standard protocols [28, 32], we annotate the ori-

ented bounding boxes (OBB) under LiDAR coordinate sys-

tem [21, 23]2, which surrounding the outline of the objects

more tightly than the axis-aligned bounding boxes. We ap-

ply Principal Component Analysis (PCA) to the x and y co-

ordinates of segments in each object, as each object consists

of many annotated segments.

D.2. Detailed Dataset Statistics

In Table D1, we present the detailed statistics of our

Matterport3D2 dataset. At each viewpoint, there are six

multi-view images (c.f . §D.1). However, since we need

to filter the objects at each viewpoint, we only collect the

multi-view images of viewpoints that have objects. We use

the same train seen, val unseen, and test unseen splits as

existing VLN datasets [1, 2].

1https://github.com/niessner/Matterport/blob/
master/data_organization.md

2https://mmdetection3d.readthedocs.io/en/
latest/tutorials/coord_sys_tutorial.html



(a) Groundtruth path in a top-down view (b) Our agent on REVERIE (succeed)

REVERIE: Go to the kitchen and turn sink next to the scales on and off.
R2R: Walk across living room, at hallway on the right turn right and go down. Turn right at first door, enter pantry and stop in the middle of counter.

(c) Our agent on R2R (succeed)
Figure C1: Visual results with the same groundtruth path on REVERIE and R2R dataset.

Split viewpoints chair door table picture cabinet cushion window sofa bed chest plant sink toilet monitor lighting shelving appliances overall

train seen 3463 14665 18394 5511 8493 3632 5534 13918 1056 1100 2215 1875 1831 605 1745 8171 2629 847 92221

val unseen 439 1634 2456 863 1388 726 1491 1501 176 97 211 223 179 48 72 762 380 107 12314

test unseen 829 2388 4105 1009 2492 1223 1411 2365 289 285 277 1063 601 228 323 1469 547 357 20432

Table D1: Statistics of Matterport3D2 dataset.

E. Discussion

Asset License and Consent. In this study, we explore

vision-language navigation using famous datasets, i.e.

Matterport3D [31], R2R [1], and REVERIE [2], that

are all publicly available for academic purposes. All

the code is released under the MIT license. We im-

plement all models on the MMDetection3D code-

base. MMDetection3D codebase (https://github.
com/open-mmlab/mmdetection3d) is released un-

der Apache 2.0 license.

Broader Impact. Our work introduces BEV feature for

VLN with BSG. Our approach not only achieves a promis-

ing improvement of model performance, but also enhances

the decision-making by providing grid-level decision score.

Furthermore, Matterport3D2 dataset, which includes ori-

ented bounding boxes for indoor 3D detection, will con-

tribute to future research in the community. It should be

noted that our navigation agents are developed and evalu-

ated in virtual simulated environments. Since we primar-

ily trained the model in a static environment where all ob-

jects are relatively stationary, deploying the algorithm on a

real-world robot may result in collisions with moving ob-

jects and cause harm to individuals. Therefore, further re-

search and development should be conducted to ensure safe

deployment in real-world scenarios, such as adding more

speed sensors to avoid collisions and including additional

environments to study potential damage risks.

Classes AP25 AR25 AP50 AR50

cabinet 0.522 0.676 0.348 0.551

door 0.451 0.649 0.279 0.516

picture 0.152 0.334 0.053 0.186

cushion 0.489 0.659 0.281 0.505

window 0.413 0.570 0.251 0.434

shelving 0.501 0.629 0.320 0.501

sofa 0.663 0.765 0.394 0.581

lighting 0.257 0.486 0.103 0.308

plant 0.587 0.729 0.352 0.566

sink 0.486 0.654 0.265 0.486

table 0.487 0.668 0.306 0.525

bed 0.691 0.740 0.535 0.649

toilet 0.529 0.645 0.306 0.456

chair 0.542 0.695 0.374 0.579

appliances 0.504 0.613 0.346 0.507

chest 0.447 0.607 0.247 0.448

monitor 0.413 0.570 0.264 0.446

Overall 0.478 0.629 0.295 0.485

Table E2: Results on Matterport3D2 test unseen.
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