
Appendix: CLIP-Driven Universal Model
Abstract. In this supplementary material, we provide addi-
tional information about the CLIP-Driven Universal Model
and the assembly of 14 public datasets, as well as more
detailed experimental results than those in the main paper.
Appendix A discusses the influence of the medical prompt
template. Appendix B provides the specifications for the
assembly of datasets. Appendix C elaborates on the imple-
mentation details, including the data augmentations, model
network structures and evaluation metrics used in the main
paper. Appendix D supplements the qualitative and quan-
titative analysis in the main paper, including the visualiza-
tion of kidney tumors and liver tumors, complete evaluation
results of the transfer learning experiment, and whole em-
bedding space visualization. Finally, Appendix E visualizes
several open challenges when assembling public datasets
with partial labels.

A. Medical Prompt Template
To fully explore the effect of templates on CLIP embed-

ding, an experiment is performed in the whole assembly of
datasets as shown in Table 1. Four text templates are em-
ployed to show the context, i.e., “V1: A computerized to-
mography of a [CLS].”, “V2: There is [CLS] in this comput-
erized tomography.”, “V3: This computerized tomography
has a [CLS].”, “V4: A photo of a [CLS].”. The effective-
ness of the prompt template is slightly different from the
toy experiment. With increasing organ numbers, templates
V1 and V2 still show better performance in encoding the
relationship, but template V3 would deteriorate the results.
In addition, a widely used template V4 could also promote
the segmentation performance.

As known, the prompt template is a crucial factor for text
model [92, 44]. How select an appropriate template is still
an open problem for the medical image text-vision models.
We encourage more future work to explore this area.

B. Assembly of Datasets
The assembly of datasets consists of 14 publicly avail-

able datasets for training and 2 public datasets and 1 large-
scale private dataset for testing (summarized in Table 7). It
is non-trivial to assemble datasets annotated from various
institutions since the annotation protocols are inconsistent.
As mentioned in the main paper, we unify the label index for
all datasets. The corresponding relationship is as follows.
(Spleen, 1); (Right Kidney, 2); (Left Kidney, 3); (Gall Blad-
der, 4); (Esophagus, 5); (Liver, 6); (Stomach, 7); (Aorta, 8);
(Postcava, 9); (Portal Vein and Splenic Vein, 10); (Pancreas,
11); (Right Adrenal Gland, 12); (Left Adrenal Gland, 13);
(Duodenum, 14); (Hepatic Vessel, 15); (Right Lung, 16);
(Left Lung, 17); (Colon, 18); (Intestine, 19); (Rectum, 20);
(Bladder, 21); (Prostate/Uterus, 22); (Head of Femur Left,

23); (Head of Femur Right, 24); (Celiac Truck, 25); (Kid-
ney Tumor, 26); (Liver Tumor, 27); (Pancreas Tumor, 28);
(Hepatic Vessel Tumor, 29); (Lung Tumor, 30); (Colon Tu-
mor, 31); (Kidney Cyst, 32). Firstly, we map all the datasets
into the standard index template. Then, for these datasets
(KiTS, WORD, AbdomenCT-1K, and CT-ORG), which do
not distinguish between the left and right organs, we split
the organ (Kidney, Adrenal Gland, and Lung) into left part
and right part through the script. In addition, we have taken
the inclusion relation into consideration, e.g., the organ tu-
mor is part of the organ, and the hepatic vessel is inside the
liver. Since we formulate each organ segmentation result
as a binary mask, we can organize the segmentation ground
truth for these overlapped organs independently in a binary
mask manner.
Pancreas-CT [60] consists of 82 contrast-enhanced ab-
dominal CT volumes. This dataset only provides the pan-
creas label annotated by an experienced radiologist, and all
CT scans have no pancreatic tumor.
LiTS [3] contains 131 and 70 contrast-enhanced 3-D ab-
dominal CT scans for training and testing, respectively. The
data set was acquired by different scanners and protocols at
six different clinical sites, with a largely varying in-plane
resolution from 0.55 to 1.0 mm and slice spacing from 0.45
to 6.0 mm.
KiTS [24] includes 210 training cases and 90 testing cases
with annotations provided by the University of Minnesota
Medical Center. Each CT scan has one or more kidney tu-
mors.
AbdomenCT-1K [43] consists of 1112 CT scans from five
datasets with liver, kidney, spleen, and pancreas annota-
tions.
CT-ORG [58] is composed of 140 CT images containing 6
organ classes, which are from 8 different medical centers.
Most of the images exhibit liver lesions, both benign and
malignant.
CHAOS [71] provides 20 patients for multi-organ segmen-
tation. All CT scans have no liver tumor.
MSD CT Tasks [1] includes liver, lung, pancreas, colon,
hepatic vessel, and spleen tasks for a total of 947 CT scans
with 4 organs and 5 tumors.
BTCV [36] consists of 50 abdominal CT scans from
metastatic liver cancer patients or post-operative ventral
hernia patients. They are collected from the Vanderbilt Uni-
versity Medical Center.
AMOS22 [31] is the abbreviation of the multi-modality ab-
dominal multi-organ segmentation challenge of 2022. The
AMOS dataset contains 500 CT with voxel-level annota-
tions of 15 abdominal organs.
WORD [42] collects 150 CT scans from 150 patients be-
fore the radiation therapy in a single center. All of them are
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Table 7. The information for an assembly of datasets. We have developed a Universal Model from an assembly of 1–14 public
datasets. The official test and validation sets of Medical Segmentation Decathlon (MSD) and Beyond the Cranial Vault (BTCV) are used
to benchmark the performance of organ segmentation (§4.1) and tumor detection (§4.2). 3D-IRCADb (15), TotalSegmentator (16) and
a large-scale private dataset (17), consisting of 5,038 CT scans with 21 annotated organs, are used for independent evaluation of model
generalizability and transferability (§5). This list will continue to grow when more annotated datasets become available.

Datasets # Targets # Scans Annotated Organs or Tumors
1. Pancreas-CT [60] 1 82 Pancreas
2. LiTS [3] 2 201 Liver, Liver Tumor⇤
3. KiTS [24] 2 300 Kidney, Kidney Tumor⇤
4. AbdomenCT-1K [43] 4 1,000 Spleen, Kidney, Liver, Pancreas
5. CT-ORG [58] 4 140 Lung, Liver, Kidneys and Bladder
6. CHAOS [71] 4 40 Liver, Left Kidney, Right Kidney, Spl
7-11. MSD CT Tasks [1] 9 947 Spl, Liver and Tumor⇤, Lung Tumor⇤, Colon Tumor⇤, Pan and Tumor⇤, Hepatic Vessel and Tumor⇤
12. BTCV [36] 13 50 Spl, RKid, LKid, Gall, Eso, Liv, Sto, Aor, IVC, R&SVeins, Pan, RAG, LAG
13. AMOS22 [31] 15 500 Spl, RKid, LKid, Gall, Eso, Liv, Sto, Aor, IVC, Pan, RAG, LAG, Duo, Bla, Pro/UTE
14. WORD [42] 16 150 Spl, RKid, LKid, Gall, Eso, Liv, Sto, Pan, RAG, Duo, Col, Int, Rec, Bla, LFH, RFH

15. 3D-IRCADb [65] 13 20 Liv, Liv Cyst, RLung, LLung, Venous, PVein, Aor, Spl, RKid, LKid, Gall, IVC

16. TotalSegmentator [76] 104 1,024

Clavicula, Humerus, Scapula, Rib 1-12, Vertebrae C1-7, Vertebrae T1-9, Vertebrae L1-5, Hip,
Sacrum, Femur, Aorta, Pulmonary Artery, Right Ventricle, Right Atrium, Left Atrium, Left Ventri-
cle, Myocardium, PVein, SVein, IVC, Iliac Artery, Iliac Vena, Brain, Trachea, Lung Upper Lobe,
Lung Middle Lobe, Lung Lower Lobe, AG, Spl, Liv, Gall, Pan, Kid, Eso, Sto, Duo, Small Bowel,
Colon, Bla, Autochthon, Iliopsoas, Gluteus Minimus, Gluteus Medius, Gluteus Maximus

17. JHH (private) 21 5,038
Aor, AG, CBD, Celiac AA, Colon, duo, Gall, IVC, Lkid, RKid, Liv, Pan, Pan Duct, SMA, Small
bowel, Spl, Sto, Veins, Kid LtRV, Kid RtRV, CBD Stent, PDAC⇤, PanNET⇤, Pancreatic Cyst⇤

scanned by a SIEMENS CT scanner without appearance en-
hancement. Each CT volume consists of 159 to 330 slices
of 512 × 512 pixels.

3D-IRCADb [65] contains 20 venous phase enhanced CT
scans. Each CT scan has various annotations, and only an-
notated organs are tested to validate the model’s generaliz-
ability.

TotalSegmentator [76] collects 1024 CT scans randomly
sampled from PACS over the timespan of the last 10 years.
The dataset contains CT images with different sequences
(native, arterial, portal venous, late phase, dual-energy),
with and without contrast agent, with different bulb volt-
ages, with different slice thicknesses and resolution and
with different kernels (soft tissue kernel, bone kernel).

JHH (private) contains 5038 CT scans with 21 annotated
organs, where each case was scanned by contrast-enhanced
CT in both venous and arterial phases, acquired on Siemens
MDCT scanners. The JHH dataset is used to investigate the
extensibility of new classes.

C. Implementation Details
C.1. Data Augmentation

Our data augmentation is implemented in python with
MONAI10. The orientation of CT scans is changed into
specified axcodes. Isotropic spacing is adopted to re-slice
each scan to the same voxel size of 1.5⇥1.5⇥1.5mm3. We
truncate the intensity in each scan to the range [�175, 250]

10https://monai.io/

Table 8. The 5-fold cross-validation performance on MSD.
These are the tabular comparison between Universal Model and
Swin UNETR [68] (previously ranked first on the MSD leader-
board). The performance is evaluated by DSC scores.

Task SwinUNETR [68] Ours

Task 03 Liver 94.12±2.34 96.49±0.23
Liver Tumor 57.86±4.72 71.94±3.74

Task 06 Lung Tmuor 68.90±5.44 67.15±5.81

Task 07 Pancreas 80.06±0.83 82.70±1.96
Panc. Tumor 52.53±3.76 60.82±10.2

Task 08 Hepat. Ves. 62.33±2.44 62.55±3.64
Ves. Tumor 68.56±3.82 69.39±2.29

Task 09 Spleen 95.80±0.56 96.71±0.21
Task 10 Col. Tumor 50.45±10.1 62.14±17.8

and linearly normalize them to [0, 1]. Considering the valid
part is part of the whole medical image, we crop only the
foreground object based on the images. During training, we
crop random fixed-sized 96⇥96⇥96 regions with the center
being a foreground or background voxel based on the pre-
defined ratio. Also, we randomly rotate the input patch by
90 degrees and shift intensity with 0.1 offset with 0.1 and
0.2 probability. To avoid confusion between the organ in the
right and left parts, we do not use mirroring augmentation.

C.2. Network Structures
Text branch. We apply the pre-trained text encoder “ViT-
B/32” of the CLIP as the text branch11. We can extract and
store the text features to reduce overhead brought by the text
encoder in the training and inference stage since the CLIP
embedding only depends on the dictionary, which is fixed.

11https://github.com/openai/CLIP
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Vision branch. We adopt Swin UNETR as a vision en-
coder. The Swin UNETR consists of 4 attention stages
comprising 2 transformer blocks and 5 convolution stages
comprising of CNN-based structure. In the attention stage,
a patch merging layer is used to reduce the resolution by
a factor of 2. Stage 1 consists of a linear embedding layer
and transformer blocks that maintain the number of tokens
as H

2 ⇥ W

2 ⇥ D

2 . a patch merging layer groups patches with
resolution 2 ⇥ 2 ⇥ 2 and concatenates them, resulting in a
4C-dimensional feature embedding. A linear layer is then
used to down-sample the resolution by reducing the dimen-
sion to 2C. The same procedure continues in stages 2, 3,
and 4 [68]. The text-based controller is a single convolu-
tional layer, which takes the CLIP embedding and global
pooling feature from the last convolution stages in the vi-
sion encoder as input.

C.3. Evaluation Metrics

The Dice similarity coefficient (DSC) and Normalized
Surface Distance (NSD) are used as measurements for 3D
segmentation results. The DSC metric is defined as:

DSC =
2
P

I

i=1 YiŶiP
I

i=1 Yi +
P

I

i=1 Ŷi

, (1)

where Y and Ŷ denote the ground truth and prediction of
voxel values. The details of Normalized Surface Distance
(NSD) could refer to Sec. 4.6 in [49].

D. Additional Evaluations
Table 8 shows the detailed numerical result between

Universal Model and Swin UNETR. Tables 9–12 and Ta-
ble 13 show the per-class evaluation of TotalSegmentator
and JHH, which validates the transferability of the proposed
Universal Model.

Figure 9 exhibits the contour line comparison among
Universal Model and two human experts. We can see the
model predictions are roughly similar to human annotation,
which validates the effectiveness of the pseudo label gener-
ated by our Universal Model.

Figure 11 and Figure 10 shows several kidney and liver
tumor cases comparison among the proposed Universal
Model and four competitive baseline methods. Our method
can not only detect small and big tumors in various organs
but also not generate false positives of tumors.

Table 14 shows the ablation study results of CLIP em-
bedding, which is an extension for Table 1. Dice scores for
each organ and tumor are reported.

Figure 12 shows the whole embedding space of baseline
method and universal model. Our method shows better se-
mantic relationship of anatomical structure.

E. Discussion of Open Challenges

Inconsistent label protocols. The first open challenge is the
inconsistent annotation protocol. The annotation standard is
different from institution to institution. In AMOS, “Aorta”
refers to the entire region of Aorta, but in AbdomenCT-1K,
a part of the upper regions annotation is missing. It is be-
cause of the inconsistent definitions in different datasets and
this requires considerable manual corrections of several ex-
perienced radiology experts when assembling these datasets
together.
Long-tail problem. The assembly of public datasets leads
to severe class imbalance problems, especially for small tu-
mors. We count the proportion of each organ and tumor
in Figure 15. The assembly of datasets has a severe long-
tail distribution, which would lead to unsatisfactory perfor-
mance of tumor classes. Mitigating the long-tail distribu-
tion would contribute to more robust detection of the tumor.
In this paper, we utilize data augmentation to alleviate the
long-tail problem, but more research is encouraged to ex-
plore the solution to these two problems.
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Figure 9. Contour line comparison among pseudo labels and two human experts. The red line represents the annotation from Doctor
1; green line indicates the annotation from Doctor 2; blue line shows the results generated by Universal Model. Examples of CT scans
annotated by our pseudo labels and two human experts with contour line comparison. The prediction results of these organs generated by
the medical model are comparable with human experts.
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Figure 10. Liver tumor detection. Qualitative visualizations of the proposed Universal Model and four competitive baseline methods. We
review the detection results of tumors from smaller to larger sizes (Rows 1–4). The Universal Model succeeds in detecting small tumors
ignored by other methods and in detecting multiple tumors in one CT. In addition, it avoids the false positive prediction, which validates
the good practicability of Universal Model.
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Figure 11. Kidney tumor detection. Qualitative visualizations of the proposed Universal Model and four competitive baseline methods.
We review the detection results of tumors from smaller to larger sizes (Rows 1–4). The Universal Model can detect well not only on the
kidneys (red region), but also kidney tumors (green region) and cysts (blue region).
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Table 9. The complete evaluation of TotalSeg vertebrae. The results are evaluated by DSC. Our Universal Model represents the best
transferability.

Method L5 L4 L3 L2 L1 T12 T11 T10 T9 T8 T7 T6
Scratch 86.68 88.37 89.83 84.28 91.98 87.45 88.29 86.78 83.50 75.70 77.73 75.84
MedicalNet [10] 91.72 91.01 86.03 84.73 91.52 89.98 89.06 89.35 85.71 82.99 81.54 79.74
Models Gen. [98] 89.64 89.24 89.38 82.85 90.79 88.62 90.11 90.43 89.22 85.21 80.83 77.40
Swin UNETR [68] 89.56 90.80 93.08 86.38 94.35 89.65 92.02 91.99 89.65 82.20 85.01 81.06
UniMiSS [77] 89.20 91.21 94.16 86.61 91.57 87.29 90.18 90.56 88.09 83.47 80.73 76.40
Universal Model 88.95 91.38 93.82 87.04 93.53 88.96 90.50 91.40 89.18 84.25 83.63 79.95

Method T5 T4 T3 T2 T1 C7 C6 C5 C4 C3 C2 C1 Average
Scratch 73.14 72.26 77.12 80.36 85.76 83.39 69.80 70.23 69.82 85.74 83.35 78.18 81.06
MedicalNet [10] 77.28 76.60 76.57 80.94 85.54 83.05 76.05 73.04 80.55 74.35 74.67 72.91 82.28
Models Gen. [98] 79.59 78.73 82.01 84.63 90.02 88.20 81.09 78.90 78.21 89.69 88.06 80.23 85.12
Swin UNETR [68] 82.33 77.74 81.78 83.53 88.22 87.81 78.38 80.36 83.00 92.68 87.97 80.16 86.23
UniMiSS [77] 78.97 76.60 82.33 85.14 90.04 88.68 79.18 79.17 79.00 88.19 86.38 79.80 85.12
Universal Model 83.07 78.67 82.97 86.06 90.67 88.75 77.03 80.87 83.05 92.94 88.20 80.87 86.49

Table 10. The complete evaluation of TotalSeg cardiac. The results are evaluated by DSC. Our Universal Model represents the best
transferability. The abbreviation in the table is listed as follows. HM (heart myocardium), HA (heart atrium), HV (heart ventricle), PA
(pulmonary artery), IA (iliac artery), IV (iliac vena), UB (urinary bladder).

Method esophagus trachea HM HA left HV left HA right HV right PA brain
Scratch 84.73 90.72 85.53 91.78 91.15 90.10 88.25 87.20 93.79
MedicalNet [10] 89.43 94.08 88.71 93.50 92.17 90.90 90.83 89.51 95.11
Models Gen. [98] 87.96 93.47 87.40 93.61 92.23 92.02 89.74 89.34 94.99
Swin UNETR [68] 89.77 94.37 88.85 94.42 92.99 92.61 90.40 88.91 95.14
UniMiSS [77] 90.45 94.51 90.29 94.34 93.70 93.10 91.46 89.67 94.99
Universal Model 90.97 94.71 90.88 94.64 93.72 93.30 91.66 90.80 95.34

Method IA left IA right IV left IV right small bow. duodenum colon UB face Average
Scratch 80.32 79.78 79.80 81.69 81.97 72.21 82.51 89.59 69.40 84.47
MedicalNet [10] 87.06 84.90 86.93 86.46 83.14 72.01 84.22 90.43 73.85 87.40
Models Gen. [98] 85.71 83.09 85.77 85.79 81.75 69.37 85.25 90.31 69.42 86.51
Swin UNETR [68] 88.26 86.44 87.13 87.59 83.29 70.71 87.50 89.93 74.08 87.91
UniMiSS [77] 89.18 87.81 89.04 88.55 84.83 74.74 88.16 91.83 74.76 88.96
Universal Model 89.89 88.54 89.58 89.27 84.85 76.23 89.06 92.07 76.81 89.57

Table 11. The complete evaluation of TotalSeg muscles. The results are evaluated by DSC. Our Universal Model represents the best
transferability. The abbreviation in the table is listed as follows. Clav. (Clavicula), GMa (gluteus maximus), GMe (gluteus medius), GMi
(gluteus minimus), Aotu. (Autochthon)

Method Humerus L Humerus R Scapula L Scapula R Clav. L Clav. R Femur L Femur R Hip L Hip R Sacrum
Scratch 84.27 84.44 91.71 89.78 80.38 75.81 93.41 93.02 92.90 88.66 83.63
MedicalNet [10] 87.25 85.67 88.68 92.62 94.35 93.96 84.85 96.59 96.98 96.31 95.19
Models Gen. [98] 90.61 79.73 88.56 92.06 91.19 92.57 86.08 93.57 85.35 82.40 87.91
Swin UNETR [68] 88.32 86.35 90.82 93.88 94.90 94.52 85.92 97.71 97.42 97.49 95.73
UniMiSS [77] 89.73 92.30 91.72 94.77 94.57 93.66 84.92 97.67 97.35 97.11 96.18
Universal Model 91.32 93.87 93.11 95.59 95.00 95.88 86.79 98.48 98.04 98.32 96.94

Method GMa L GMa R GMe L GMe R GMi L GMi R Aotu. L Aotu. R Iliopsoas L Iliopsoas R Average
Scratch 95.53 91.78 85.27 94.80 86.54 93.01 95.17 93.44 87.99 83.95 88.83
MedicalNet [10] 94.69 95.72 92.17 89.15 89.76 90.77 94.45 94.24 80.29 84.94 91.36
Models Gen. [98] 96.19 92.06 90.07 94.99 92.12 92.60 95.86 95.93 85.64 83.82 89.96
Swin UNETR [68] 95.32 96.34 93.57 89.87 90.75 91.74 95.16 94.86 83.53 86.00 92.39
UniMiSS [77] 95.53 96.37 93.80 90.28 90.87 93.02 95.17 95.48 85.71 84.02 92.86
Universal Model 96.68 96.99 95.55 91.36 93.19 94.52 96.31 96.34 86.92 88.89 94.29
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Table 12. The complete evaluation of TotalSeg organs. The results are evaluated by DSC. Our Universal Model represents the best
transferability. The abbreviation in the table is listed as follows. IVC (inferior vena cava), PSV (portal vein and splenic vein), AG (adrenal
gland), LUL (lung upper lobe), LLL (lung lower lobe), LML (lung middle lobe)

Method spleen Kidney R Kidney L gallbladder liver stomach aorta IVC PSV
Scratch 93.58 94.09 87.73 73.86 96.79 89.17 90.68 82.10 71.35
MedicalNet [10] 95.54 92.43 90.86 79.36 97.10 91.53 90.12 86.18 73.34
Models Gen. [98] 95.60 94.37 88.51 78.39 97.39 91.68 93.18 85.94 74.58
Swin UNETR [68] 89.77 94.37 88.85 74.42 92.99 92.61 90.40 88.91 75.14
UniMiSS [77] 95.78 94.75 89.35 79.14 97.39 91.87 93.50 86.19 75.26
Universal Model 96.24 94.67 91.43 81.48 97.63 92.76 92.22 87.87 76.10

Method pancreas AG R AG L LUL L LLL L LUL R LML R LLL R Average
Scratch 80.80 78.94 72.83 95.88 91.66 87.17 88.91 93.71 86.42
MedicalNet [10] 83.11 79.15 69.22 93.64 89.88 86.38 87.08 92.40 86.90
Models Gen. [98] 82.97 83.05 75.49 95.79 92.90 90.10 91.06 94.65 85.78
Swin UNETR [68] 85.24 81.86 74.33 95.06 92.16 88.37 89.45 94.04 88.56
UniMiSS [77] 82.11 79.37 73.12 96.08 93.18 90.31 91.99 95.43 88.51
Universal Model 85.21 82.25 75.01 95.04 92.28 88.21 89.69 94.06 88.95

Table 13. The complete evaluation of JHH. The results are evaluated by DSC. IVC (inferior vena cava), PSV (portal vein and splenic
vein), AG (adrenal gland), CAA (celiac abdominal aorta)

Method spleen Kidney R Kidney L gallbladder liver stomach
Scratch 95.66 94.43 93.69 86.14 96.74 94.30
MedicalNet [10] 91.08 88.63 86.60 61.23 93.29 88.22
Models Gen. [98] 95.02 93.44 93.07 84.73 94.12 94.05
Swin UNETR [68] 94.71 93.95 92.27 81.75 96.00 92.79
UniMiSS [77] 88.35 91.49 90.41 82.91 93.80 89.57
Universal Model 95.98 94.71 94.00 87.18 96.87 94.50

Method aorta IVC pancreas PSV AG CAA Average
Scratch 87.68 79.73 85.03 68.48 66.61 50.61 81.98
MedicalNet [10] 83.27 75.32 70.67 46.82 41.69 26.87 68.88
Models Gen. [98] 89.46 81.50 84.23 71.79 70.46 54.23 82.81
Swin UNETR [68] 87.43 80.89 81.19 66.71 65.04 36.38 79.55
UniMiSS [77] 88.50 77.98 71.86 61.68 51.82 49.16 76.10
Universal Model 88.36 79.98 85.82 69.38 65.88 50.53 82.24

(a) One-hot label encoding (b) CLIP label encoding

Figure 12. t-SNE Visualization of Whole Embedding Space. Colors for corresponding embeddings are shown in figure.
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Table 14. The complete results of embedding ablation study. The results are evaluated by DSC. GB (Gallbladder), PSV (portal vein and
splenic vein), AG (adrenal gland), HV (hepatic vessel), HF (head of femur), CT (celiac truck), KiT(kidney tumor), LiT (liver tumor), PT
(pancreas tumor), HVT (hepatic vessel tumor), LuT (lung tumor), CoT (colon tumor), KiC (kideney cyst)

Embedding spleen Kidney R Kidney L GB Esophagus Liver Stomach Aorta Postcava PSV Pancreas
One-hot [88] 91.92 91.98 92.14 71.75 70.28 95.10 80.52 83.57 82.71 67.81 74.06
BioBERT [83] 94.65 93.26 92.98 75.14 72.32 95.09 87.68 91.05 83.91 67.83 80.51
CLIP V1 92.35 91.83 91.89 72.45 71.38 90.23 73.07 86.77 78.17 74.00 74.91
CLIP V2 93.05 92.14 91.42 75.88 75.56 94.75 75.79 91.15 80.64 78.90 78.94
CLIP V3 94.69 94.09 92.77 73.45 72.87 95.71 89.19 92.19 83.44 59.20 86.09

Embedding AG R AG L Duodenum HV Lung R Lung L Colon Intestine Rectum Bladder Prostate
One-hot [88] 64.52 66.96 55.66 71.03 79.63 66.75 69.22 78.05 69.87 76.74 66.15
BioBERT [83] 65.94 68.72 68.61 59.14 75.40 69.09 71.24 81.78 65.58 74.51 69.51
CLIP V1 72.07 72.42 62.42 74.53 79.32 76.52 70.32 75.65 63.11 75.06 66.47
CLIP V2 79.98 79.73 66.01 68.65 75.87 82.98 74.88 70.82 64.64 70.06 68.8
CLIP V3 64.75 70.18 71.11 65.43 77.48 62.11 71.77 81.47 79.42 86.71 72.96

Embedding HF L HF R CT KiT LiT PT HVT LuT CoT KiC Ave
One-hot [88] 70.27 60.23 78.92 63.84 68.02 55.48 52.31 53.87 48.39 35.81 70.42
BioBERT [83] 74.39 79.07 80.69 57.41 63.44 39.70 57.88 58.57 54.19 20.33 71.55
CLIP V1 74.61 72.53 79.28 56.62 76.24 61.05 56.49 73.60 55.03 32.87 73.49
CLIP V2 69.98 75.73 84.04 67.04 82.09 77.75 67.45 75.38 55.55 35.79 75.66
CLIP V3 84.94 89.45 77.55 68.72 74.87 65.46 73.53 73.12 60.66 30.44 76.11
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Figure 13. Inconsistent Label Protocol. The aorta annotation standard is inconsistent in AbdomenCT-12organ and other datasets. A part
of the upper aorta region is missing in AbdomenCT-12organ, while the aorta annotation is complete in BTCV and AMOS.

22



Figure 14. Prediction of incomplete labels in previous datasets. We leveraged the predictions generated by the Universal Model to
produce masks for 25 organs in 20 CT datasets, achieving a satisfactory level of accuracy. However, we note that the accuracy of the
6-tumor segmentation still requires validation through pathology reports, which we have identified as a future direction for our work.
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Figure 15. The proportion of 32 classes. We observe that the assembly of datasets presents severe long-tail distribution.
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