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A. Interactive 3D Visualization
High-resolution qualitative results with interactive 3D

hand and object meshes can be visualized at our project
webpage https://stevenlsw.github.io/contactgen/.

B. Human Studies Setup
We presented 4 views for each grasp. We gathered re-

sponses from 10 participants and posed two questions for
each sampled grasp: (1) The generated hand grasp is natural
and realistic, what is your opinion? (2) The generated hand
grasp is stable, what is your opinion? Participants rated
these questions on a five-point scale, ranging from strongly
disagree (0) to strongly agree (5).

C. Implementation details of hand SDF model
We train the piecewise hand SDF model following [4].

We use the same network architecture and the same loss
function as [4]. Each part decoder consists of four
fully-connected layers with 32 neurons each, employing
LeakyReLU activation with a negative slope of 0.1 for each
layer. We use Mano shape [8] as the fixed shape code
shared by all part decoders. For each hand sample, we
conducted uniform sampling of 7,000 points on the hand
mesh surface, an additional 7,000 near-surface points gen-
erated by applying isotropic Gaussian noise with a mean of
zero and a standard deviation of σ = 0.01 to each sam-
pled surface point, along with 1,400 randomly selected off-
surface points as per Gropp et al.’s approach [2]. For each
on-surface sampled point, we first compute its barycentric
coordinates relative to the mesh and corresponding skinning
weights weighted by the neighborhood hand mesh vertices.
We pick the top 2 highest skinning weights as the part label
of the sampled point. The network is trained from scratch.
We train it for 100 epochs with a learning rate 1e − 4 and
Adam optimizer [3]. Once the network was trained, given
the provided pose and shape code, we could compute the
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Figure 1: Human studies interface. Participants were asked to
rate the quality of each grasp based on its naturalness and the sta-
bility of holding the object using a five-point scale ranging from
strongly disagree (0) to strongly agree (5).

SDF with respect to a given query point. Subsequently,
by employing the Marching Cubes algorithm [5], we could
reconstruct each part under a specified pose and shape, a
visual representation of which is presented in Fig. 2. For
more detailed, high-resolution visualizations of each recon-
structed 3D part model, please refer to our project page ac-
cessible at https://stevenlsw.github.io/contactgen/.

D. Network architecture
Our ContactGen CVAE comprises a common backbone

and three sets of encoders and decoders for each aspect of
the ContactGen. To extract features, we utilize the Point-
Net++ [7] SSG segmentation network as the backbone. This
network consists of three sequential set abstraction layers
and three feature propagation layers, forming the architec-



Figure 2: Hand part visualization. We visualize each hand part from the piecewise hand SDF model output under the given pose of Fig. 2
in the paper. Each part is obtained by running Marching Cubes algorithm [5] at the top of corresponding SDF output.
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Figure 3: Contact Representation commparison against ContactOpt [1] and TOCH [10] on GRAB dataset [9]. Given the object and GT
contact, we verify whether each method could recover the GT hand grasp. It can be seen both ContactOpt and TOCH exhibit failures in
certain cases, whereas our method manages to achieve the closest reconstruction to the ground truth.

ture: SA(512, 0.2, [64, 128]) → SA(128, 0.4, [128, 256])
→ SA([256, 512]) → FP(512, 256) → FP(256, 128) →
FP(128, 64). Each encoder is implemented as a basic Point-
Net [6], comprising a shared MLP (64, 128, 256) applied to
each point’s feature and max pooling across points. Pooled
features are then directed to another MLP (64, 256) to gen-
erate latent distribution parameters. The MLP incorporates
LeakyReLU activation with a negative slope of 0.2. Fol-
lowing sampling of the latent code from the distribution,
it is concatenated with each point’s feature and sent to the

respective decoder for prediction of each component map.
The decoder architecture also employs the PointNet [6] ap-
proach, with the max pooling and MLP removed to yield
pointwise predictions for each map. To capture hand-part
features, we establish an embedding layer for each part with
a feature dimension of 64. We feed the corresponding em-
bedded feature of the part map into the network. For the
contact map output, we pass the decoder’s output through
a Sigmoid layer to normalize the result within the [0, 1]
range. For the part map output, we apply the argmax opera-



tion to determine the predicted hand part label. Finally, for
the direction map output, we normalize each point’s output
to create a unit vector.

E. Contact Representation comparison
As discussed in Tab. 1 of the paper, we conducted a com-

parison between our proposed contact representation and
the methods ContactOpt [1] and TOCH [10]. The aim was
to assess their effectiveness in recovering accurate ground
truth hand grasps. In Fig. 3, we offered a qualitative jux-
taposition of each approach. From the visual comparison,
ContactOpt and TOCH both exhibit inaccuracies in accu-
rately recovering the actual hand pose, primarily because
their representations lack completeness. In contrast, our
approach offers a comprehensive representation of contact,
enabling a full recovery of the ground truth hand pose.
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