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A. CT Reconstruction Formulation

In our experiments, the object to be imaged is placed
in between a source of parallel beam x-rays and a pla-
nar detector array. The x-rays get attenuated as they
propagate through the object and the intensity of at-
tenuated x-rays exiting the object is measured by the
detector. To perform tomographic imaging, the object
is rotated along an axis and repeatedly imaged at reg-
ular angular intervals of rotation. Assume that the
object is stationary in the Cartesian coordinate system
represented by the axes (x, y, z), at each rotation angle
θ of the object, we are interested in reconstructing 2D
slice images, denoted as ρ(x, y, z) of object linear atten-
uation coefficient (LAC) values along the propagation
path. The projection at a distance of r on the detector
is given by

Sθ(r, z) =

∫ ∫
ρ(x, y, z)δ(x cos(θ) + y sin(θ)− r) dxdy,

(1)
where δ is the indicator function and Sθ(r, z) is known
as sinogram. Note that equation (1) is separable in the z
coordinate. Hence, the projection relation is essentially
a 2D function in the x − y plane that is repeatedly
applied along the z-axis. The reconstruction of ρ(x, y, z)
from incomplete sinogram can be formulated as image
inverse problem described in the main paper (See [5, 7]
for more references).

FBP Reconstruction Filtered back-projection (FBP)
is an analytic algorithm for reconstructing the sam-
ple ρ(x, y, z) for the projections Sθ(r, z) at all the ro-
tation angles θ. In FBP, we first compute the fil-
tered projection measurement of each slice Ŝθ(r) =∫
F [Sθ](ω)|ω|ej2πωrdω, where F denotes the Fourier

transform and |ω| is the frequency response of the filter.
The filtered back projection reconstruction is then given
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Figure 1. Implementation of x-ray CT. An object is rotated
along an axis and exposed to a parallel beam of x-rays. The
intensity of attenuated x-rays exiting the object is measured
by the detector at regular angular intervals. The projection
at an angle of θ measured at a distance of r on the detector is
the line integral of LAC values along the line perpendicular
to the detector.

by [5]

fFBP(x, y) =

∫ π

0

Ŝθ(x cos(θ) + y sin(θ))dθ. (2)

According to equation (2), we know that a filtered ver-
sion of Sθ is smeared back on the x − y plane along
the direction (π/2− θ). The FBP reconstruction thus
consists of the cumulative sum of the smeared contri-
butions from all the projections ranging in 0 < θ < π.

LACT Reconstruction Artifacts by FBP. If the
projections are acquired over a limited angular range,
then the integration in (2) will be incomplete in the
angular space. Since each projection Sθ(r) contains the
cumulative sum of the LAC values at a rotation angle of
θ, it also contains information about the edges that are
oriented along the angular direction (π/2− θ) as shown
in Fig. 1. Now, suppose data acquisition starts at θ = 0
and stops at an angle of θ = θmax < π. Then, the edge
information contained in the projections at the angles
θ ∈ [θmax, π] will be missing in the final reconstruction.



Metric PSNR ↑ SSIM ↑
Angle 60◦ 90◦ 120◦ 60◦ 90◦ 120◦

FBP 14.95 17.28 20.97 0.464 0.543 0.603
RLS 22.72 26.19 30.42 0.699 0.833 0.888
DOLCE (FBP, w/o prox) 33.72 38.00 40.63 0.927 0.945 0.954
DOLCE (FBP, w/ prox) 34.05 38.73 42.00 0.938 0.960 0.972
DOLCE (RLS, w/o prox) 34.91 38.65 41.25 0.936 0.951 0.959
DOLCE (RLS, w/ prox) 35.15 39.27 42.52 0.945 0.963 0.974

DOLCE-SA (FBP, w/o prox) 34.31 38.75 41.49 0.936 0.952 0.961
DOLCE-SA (FBP, w/ prox) 34.58 39.28 42.55 0.943 0.963 0.975
DOLCE-SA (RLS, w/o prox) 35.55 39.31 42.12 0.944 0.954 0.965
DOLCE-SA (RLS, w/ prox) 35.78 39.75 43.11 0.949 0.969 0.977

Table 1. Average PSNR and SSIM results comparing test slices with the ground truth from medical body CT dataset.

Metric PSNR ↑ SSIM ↑
Angle 60◦ 90◦ 120◦ 60◦ 90◦ 120◦

FBP 26.08 28.34 32.18 0.668 0.713 0.752
RLS 28.05 31.01 35.61 0.775 0.860 0.914
DOLCE (FBP, w/o prox) 33.13 37.43 42.83 0.928 0.953 0.974
DOLCE (FBP, w/ prox) 33.44 38.17 44.12 0.928 0.959 0.983
DOLCE (RLS, w/o prox) 33.70 38.64 43.76 0.933 0.959 0.978
DOLCE (RLS, w/ prox) 33.98 39.28 45.18 0.935 0.967 0.987

DOLCE-SA (FBP, w/o prox) 33.85 38.26 43.74 0.932 0.959 0.978
DOLCE-SA (FBP, w/ prox) 34.11 38.91 44.87 0.931 0.963 0.985
DOLCE-SA (RLS, w/o prox) 34.41 39.40 44.52 0.941 0.966 0.981
DOLCE-SA (RLS, w/ prox) 34.68 39.88 45.68 0.941 0.971 0.988

Table 2. Average PSNR and SSIM results comparing test slices with the ground truth from checked-in luggage dataset.

This is the reason behind the edge blur in the FBP
reconstructions shown in this paper.

B. Additional Implementation Details

CTNet [1] is an end-to-end DL method, designed to
predict the invisible sinogram data by incorporating a
GAN into the neural network architecture. Note that
the original CTNet was developed on 128× 128 images.
To make it work on 512 × 512 images, given the pre-
trained CTNet on 128 × 128 images, we additionally
train a super-resolution diffusion model presented in [8]
to super-resolve the low-resolution outputs of CTNet
to the same 512× 512 dimension as other methods.

DPIR [10] refers to the SOTA PnP methods using
deep denoiser as prior for solving various ill-posed im-
age inverse problems. We modify the publicly available
implementation to train the deep denoiser 1 on each
dataset separately and follow the similar implementa-
tion settings 2 at inference. Since our CT images are
naturally in smaller intensity range, we train the DPIR

1https://github.com/cszn/KAIR
2https://github.com/cszn/DPIR

denoiser for the AWGN removal within noise level of
σ ∈ [0, 5].

ILVR [2] and DPS [3] refer to recently developed con-
ditioning methods based on unconditionally trained
DDPM for solving versatile ill-posed inverse problems.
We modify the publicly available implementation of
ILVR 3 and DPS 4 in order to incorporate our LACT
forward-model. We use the similar grid search as
DOLCE for fine-tuning the hyper-parameters within
ILVR and DPS, respectively.

We train all the diffusion models used in this paper,
modified based on the publicly available PyTorch im-
plementation 5. To indicate the high quality of our pre-
trained diffusion models used within ILVR and DPS,
we present the random samples from our two uncondi-
tionally trained denoising diffusion 512× 512 models in
Fig. 2 for luggage and medical dataset, respectively.



Metric PSNR ↑ SSIM ↑
Angle 45◦ 50◦ 55◦ 45◦ 50◦ 55◦

FBP 14.49 14.65 14.83 0.321 0.397 0.441
RLS 19.01 19.98 20.95 0.559 0.596 0.632
ILVR [2] 23.85 24.94 26.75 0.815 0.839 0.872
DPS [3] 24.50 25.84 26.71 0.833 0.848 0.870

DOLCE 24.97 27.47 31.02 0.838 0.884 0.934
DOLCE-SA 25.68 27.88 31.51 0.841 0.889 0.939

Table 3. Average PSNR and SSIM results for several methods on body CT dataset. Best values for each metric are
highlighted.

Metric PSNR ↑ SSIM ↑
Angle 45◦ 50◦ 55◦ 45◦ 50◦ 55◦

FBP 24.59 24.77 25.64 0.653 0.658 0.661
RLS 26.62 26.95 27.31 0.723 0.748 0.758
ILVR [2] 28.99 29.15 29.85 0.856 0.867 0.871
DPS [3] 29.42 29.85 30.40 0.862 0.871 0.878

DOLCE 30.46 31.45 32.39 0.884 0.899 0.921
DOLCE-SA 30.98 31.79 32.98 0.890 0.906 0.925

Table 4. Average PSNR and SSIM results on luggage dataset.

C. Additional Numerical Results

Comparison of RLS and FBP as Conditional In-
put. In Table 1 and Table 2, we present additional nu-
merical evaluations for FBP and RLS as conditional in-
put of our DOLCE models cross various angular ranges
(e.g ., θmax ∈ {60◦, 90◦, 120◦}). We use the same ran-
domly selected 300 images from test luggage and medi-
cal dataset as in the main paper, respectively. While
DOLCE using FBP as conditional input provides sub-
stantial improvements, using RLS input further boosts
the overall performance.

Incorporation of Data-Consistency. We also report
additional numerical validations on the incorporation of
forward-model at inference stage in Table 1 and Table 2.
We observer that DOLCE using the data-consistency
provided by the proximal-mapping produces better qual-
ity reconstruction samples, which highlights the poten-
tial of enforcing forward-model within sampling step.

Behavior of DOLCE to Model Mismatch. In
Table 3 and Table 4, we demonstrate the behavior of
our proposed approach for varying number of views
during testing. Specifically, we consider the DOLCE
for forward-model mismatch scenarios, where the pre-
trained DOLCE models in the main paper are tested
for θmax ∈ {45◦, 50◦, 55◦} limited-angle data. For refer-

3https://github.com/jychoi118/ilvr_adm
4https://github.com/DPS2022/diffusion-posterior-sampling
5https://github.com/openai/guided-diffusion

ences, we compare DOLCE and DOLCE-SA (sample
average) to FBP, RLS, ILVR, and DPS. We can see that
our DOLCE consistently outperforms baseline methods
even under model mismatch cases.

Additional Visual Evaluation. In Fig. 3, we com-
pare the visual results of DOLCE on medical CT test
images to FBP, U-Net, ILVR, and DPS for θmax = 60◦.
Fig. 4-6 present additional visual comparison for several
methods on the luggage dataset. In Fig. 7, we compare
DOLCE and DOLCE-SA to DPIR and U-Net on each
test dataset, respectively. We also provide video com-
parisons of our DOLCE reconstruction results in the
supplement material.

Comparison of DOLCE and Pix2Pix [4] GAN
method. We in addition report numerical comparison
of DOLCE and Pix2Pix 6, a well know image-to-image
translation GAN, on the medical CT dataset in Table C
below. The training and testing dataset of Pix2Pix are
the same as DOLCE and prepared following its official
implementation. Clearly, DOLCE outperforms PiX2Pix
by a large margin for different number of views.

Method 60◦ 90◦ 120◦

Pix2Pix [4] 28.03 31.16 37.55
DOLCE (Ours) 35.11 39.04 42.16

More Results for Uncertainty Quantification.
Fig. 8-10 shows additional numerical validation that

6https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix



DOLCE is able to quantify uncertainty by estimating
the variances directly. Since a well-calibrated model in-
dicates larger variance in areas of larger absolute error,
variance can be used as a proxy for reconstruction error
in the absence of ground truth.

D. 3D Segmentation Results

We presents additional segmentation results on the re-
construction 2D slices obtained from our DOLCE in
Fig 11- 15. The purpose of these experiments are to
evaluate how quality affects object segmentation. In
specific, we use a popular region growing segmentation
similar to the method used in [6], which is a simplified
version of the method in [9], with a randomly chosen
starting position and a fixed kernel size. The luggage
dataset contains segmentation labels of objects of inter-
est, and the evaluation focuses on how well each seg-
mentation extracts the labeled object. We reconstruct
all slices of each bag through the proposed method
and combine them into a single bag in 3D. Then we
run the region growing in 3D at multiple, hand-tuned
parameter settings (intensity threshold ranging from
0.0001 to 0.02), and reported the results from the best
performing setting. This is done as some reconstruction
results are in poor quality and sensitive to the thresh-
old. We compare the segmentations obtained using our
method to the segmentation labels as reference, and
those obtained using full-view ground truth, FBP, TV
and DPS, respectively. It is evident to observe that
our proposed reconstruction segments the objects of
interest very similar to the ground truth images, than
compared to using baseline methods for reconstruction.
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(a)

(b)

Figure 2. Random samples from our two unconditionally trained denoising diffusion 512× 512 models, respectively. (a):
diffusion model trained on human body CT images; (b): diffusion model trained on checked-in luggage dataset. These
models are used in ILVR [2] and DPS [3] as baseline methods. Images are normalized for better visualization.



Ground truth FBP ILVR DPS DOLCEU-Net

35.44/0.90730.87/0.89529.97/0.89226.87/0.85714.59/0.768

37.15/0.92630.85/0.91430.07/0.91129.88/0.87913.61/0.708

31.15/0.93128.98/0.91427.77/0.91327.17/0.81712.50/0.639

Figure 3. Visual evaluation of limited angle tomographic reconstruction in body CT images, where the input measurements
are captured respectively from an angular coverage of 60◦. Images are normalized for better visualization.
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Figure 4. Visual evaluation of limited angle tomographic reconstruction in checked-in luggage, where the input measurements
are captured respectively from an angular coverage of 60◦. Images are normalized for better visualization.
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Figure 5. Visual evaluation of limited angle tomographic reconstruction in checked-in luggage, where the input measurements
are captured respectively from an angular coverage of 60◦. Images are normalized for better visualization.
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Figure 6. Visual evaluation of limited angle tomographic reconstruction in checked-in luggage, where the input measurements
are captured respectively from an angular coverage of 90◦. Images are normalized for better visualization.



Ground truth U-Net DOLCE DOLCE-SADPIR

23.91/0.818 28.66/0.861 36.93/0.931 37.40/0.935

21.59/0.822 27.66/0.857 33.06/0.928 33.31/0.933

34.94 34.17 38.25 39.44

Figure 7. Additional visual evaluation of limited angle tomographic reconstruction in body CT scan (top) and checked-in
luggage (bottom), where the input measurements are captured respectively from an angular coverage of 60◦. Images are
normalized for better visualization.
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Figure 8. More visual results on body CT images. The error to the ground truth is computed using the conditional
mean E[x|y], and the variance corresponds to per-pixel standard deviation. It is evident that the ill-posed nature of the
reconstruction task has a direct impact on the diversity of the generated samples, and the variances are highly correlated
with the reconstruction errors.
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Figure 9. More visual results on body CT images. The error to the ground truth is computed using the conditional
mean E[x|y], and the variance corresponds to per-pixel standard deviation. It is evident that the ill-posed nature of the
reconstruction task has a direct impact on the diversity of the generated samples, and the variances are highly correlated
with the reconstruction errors.
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Figure 10. More visual results on luggage images. The error to the ground truth is computed using the conditional mean E[x|y],
and the variance corresponds to per-pixel standard deviation. It is evident that the ill-posed nature of the reconstruction task
has a direct impact on the diversity of the generated samples, and the variances are highly correlated with the reconstruction
errors.
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Figure 11. More 3D Segmentation Results on Test Bag 2: We use a region growing 3D segmentation in all cases
and the resulting segmentations are highlighted in color, against a 3D rendering of the 274 reconstructed 2D slices using
θmax =60◦.
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Figure 12. More 3D Segmentation Results on Test Bag 3: We use a region growing 3D segmentation in all cases
and the resulting segmentations are highlighted in color, against a 3D rendering of the 274 reconstructed 2D slices using
θmax =60◦.
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174Figure 13. More 3D Segmentation Results on Test Bag 4: We use a region growing 3D segmentation in all cases
and the resulting segmentations are highlighted in color, against a 3D rendering of the 268 reconstructed 2D slices using
θmax =60◦.
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Figure 14. More 3D Segmentation Results on Test Bag 5: We use a region growing 3D segmentation in all cases
and the resulting segmentations are highlighted in color, against a 3D rendering of the 274 reconstructed 2D slices using
θmax =90◦.
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Figure 15. More 3D Segmentation Results on Test Bag 6: We use a region growing 3D segmentation in all cases
and the resulting segmentations are highlighted in color, against a 3D rendering of the 268 reconstructed 2D slices using
θmax =90◦.


