
Supplementary Material for DeFormer: Integrating Transformers with
Deformable Models for 3D Shape Abstraction from a Single Image

Di Liu1, Xiang Yu2, Meng Ye1, Qilong Zhangli1, Zhuowei Li1, Zhixing Zhang1, Dimitris N. Metaxas1

1Rutgers University 2Amazon Prime Video

In this supplementary material, we first provide addi-
tional details about our DeFormer formulation due to the
space limit of the main paper. We then provide more visu-
alization and quantitative results to highlight the superiority
of our approach. Furthermore, we show more ablation study
results across various settings.

1. Details of DeFormer Formulations
1.1. Notation table

In Tab. 1, we provide the key variables in the paper, we
list the symbol, variable name, state space, and notes.

1.2. Parameterized Deformable Models

Prior research works develop parameterized deformable
models to represent object shapes with relatively few pa-
rameters. A notable example is in [5] which exploits com-
putational physics in the modeling process and proposes
snakes, a locally parameterized deformable model. The
snake formulation employs a force field computed from
data space to fit the target shape. Nevertheless, snakes us-
ing locally defined deformations cannot intrinsically offer
shape abstractions. [9] partially addresses the problem of
shape abstraction by using superquadric ellipsoids that ex-
plicitly deform using a few global parameters. [10] de-
velops a new physics-based framework offering multi-scale
global and local deformations, and demonstrates its power
using deformable superquadrics. Although their frame-
work addresses complex shape modeling and motion esti-
mation of objects, it relies on handcrafted parameter initial-
ization [4].

Primitive formulation. We employ superquadrics as
our basic primitive formulation for the global deformation
s. Each superquadric surface e is explicitly defined by a set
of shape-related parameters:

e = a0

 a1 cos
ε1 u cosε2 v

a2 cos
ε1 u sinε2 v

a3 sin
ε1 u

 , (1)

where −π/2 ≤ u ≤ π/2,−π ≤ v ≤ π. Here, a0 is a scal-
ing parameter, a1, a2, a3 denote the aspect ratio for x-, y-,

z- axes, respectively, and ε1, ε2 are squareness parameters.
Global deformations. To improve the geometric cov-

erage of these primitives, we introduce parameterized ta-
pering and bending deformations. These additional global
deformations are defined as continuously differentiable and
commutative functions following [7]. Specifically, due to
their suitability for natural objects, we integrate linear ta-
pering and bending of the superquadric e = (e1, e2, e3)

⊤

into one single parameterized deformation T and give the
formulation of the reference shape as:

s = T(e, t1, t2, b1, b2, b3)

=

 (t1e3
a0a3

+ 1)e1 + b1 cos(
e3+b2
a0a3

)πb3
(t2e3
a0a3

+ 1)e2
e3

 ,
(2)

where t1, t2 are the tapering parameters, b1, b2, b3 are
the magnitude, location, and influence region of bending,
respectively. The learnable parameters for s is then de-
noted as qs = (a, ϵ, t, b), where a = (a0, a1, a2, a3), ε =
(ε1, ε2), t = (t1, t2), b = (b1, b2, b3).

In this study, we only give a limited number of examples
for the primitives as well as global deformations. How-
ever, global deformations are not restricted to only taper-
ing, bending, and twisting. Any other deformations (e.g.,
shearing) that can be given as a continuous and parame-
terized function can be similarly integrated into our model.
In addition, the type of primitives is not restricted to only
superquadric shapes. Other primitive forms (e.g., spheres,
convexes, supertoroids, etc.) can also be integrated into our
unified framework, which opens up new possibilities for a
wider application range of shape abstraction tasks.

1.3. Re-projection

We use the differentiable projection module proposed in
[6] to obtain the projected image xproj from the same view-
point as the input image X . The viewpoint associated with
the input image xproj is characterized by the rotation and
translation parameters of the camera (i.e., camera motion
σ) in the image space. We obtain the estimation of camera
motion parameters qc′ and qθ′ using the encoder of MsBiT.

Table 1: Notations. For the key variables in the paper, we list the symbol, variable name, state space, and notes.

Symbol Variable name State space Notes

cσ Camera translation R3

c Primitive translation R3

R Primitive rotation R3×3

Rσ Camera rotation R3×3

s Global deformations R3

e Superquadric surface R3

d Local deformations RN N : sampling points on primitive surface
qc′ Parameters for camera translation R3 qc′ = cσ
qc Parameters for primitive translation R3 qc = c
qθ′ Parameters for camera rotation R4 qθ′ is a 4D quaternion related to Rσ

qθ Parameters for primitive rotation R4 qθ is a 4D quaternion related to R
qs Parameters for global deformations R11 qs = (a, ε, t,b), a ∈ R4, ε ∈ R2, t ∈ R2,b ∈ R3

qd Parameters for local deformations RN qd = d as we use one to one mapping
B Rotation related matrix R3×4 B = ∂Rp/∂qθ

J Jacobian matrix R3×11 J = ∂s/∂qs, J ∈ R3×6 if no global deformations

The reconstructed surface x is then projected from the esti-
mated viewpoint using the differentiable projection module
to obtain 2D image projections xproj. If the estimated cam-
era motion and the target shape reconstructions are correct,
the 2D projections xproj will match the input image X . This
process is formulated as a cycle-consistency regularization
shown in Sec. 3.4 of the main paper.

1.4. Intersections between Primitives

We follow the physics-based deformable models (DMs)
[34,47] and avoid the collisions (intersections) between
primitives by checking for primitive inter-penetration in
each training iteration. If two primitives penetrate each
other [34], we assign two equivalent and opposite collision
forces fn and −fn that are proportional to the distance be-
tween each pair of selected points on the two primitives.
These two forces are added to the respective points on the
two inter-penetrating primitives, respectively, to adjust the
external forces f and thus push the primitives to separate
from each other.

2. Network Architecture
The architecture of Multi-scale Bi-directional Trans-

former (MsBiT) and Multi-scale Holistic Fusion (MHF) is
given in Fig. 1. For the BiTrans module in Fig. 1(a), the
local deformation map li is first projected to Q/K/V with
a depth-wise separable convolution [1] due to its computa-
tional efficiency and capability in capturing local responses.
Note that we still employ 1×1 convolution to project gi with
a much smaller size to Q/K/V , in order to avoid any addi-

tional noise introduced during the padding in the depth-wise
separable convolution. Due to the symmetry of the query
and key dot product, we achieve the cross-attention map by
transposing the dot product matrix to aggregate the global
and local information of the primitive:

(lji , g
j
i) = BiTrans(lj−1

i , gj−1
i)

= (softmax(
QK

⊤

√
d

)V , softmax(
QK⊤
√
d

)V),
(3)

where lji and gji are the “Bi-channel” j-th layer outputs.
Both the two feature maps li and gi are continuously up-
dated and improved through the encoder-decoder architec-
ture for the final prediction. This mechanism enables effi-
cient feature aggregation of the global motion and deforma-
tions while preserving the ability to capture local responses
for non-rigid deformation estimation.

For the MHF module in Fig. 1(b), we first flatten and
concatenate the holistic feature maps g1-g3 from different
scales into a 1D sequence, which is further fed into the
standard Transformer block with MHSA for feature aggre-
gation. The output sequence is then chunked and folded
back to the holistic maps g′1-g′3 at the corresponding scales
in the decoder for the estimation of local non-rigid deforma-
tions. In addition, the MHF module also outputs a chunked
holistic feature map g′0 for the following global parameter
estimation.
Details. Each of the two Conv Stems used in the paper con-
sists of two 3 × 3 convolutional layers with Batch Norm and
ReLU to embed the feature maps to 4 × down-sampling/up-

𝑉

𝑄

𝐾

𝐾$

𝑄$

𝑉$

⨂

⨂
So
ft
m
ax

So
ft
m
ax

𝐻𝑊	×	𝑑

ℎ𝑤	×	𝑑

𝐻𝑊	×	ℎ𝑤

ℎ𝑤	×	𝐻𝑊

⨂

⨂
𝑑	×	𝐻𝑊

𝑑	×	ℎ𝑤

𝑑	×	𝐻𝑊

𝑑	×	ℎ𝑤

𝑄𝐾$!

𝑄$𝐾!

Conv

Conv

Conv

Conv

Conv

Conv

BN

M
H
SA ⨁ BN C
on
v

R
eL
U

⨁

(a)

(b)

×𝑚
𝑔!

𝑔"

𝑔# 𝑔#$

𝑔"$

𝑔!$

𝑔%$

𝑔&
'(! 𝑔&

'

𝑙&
'(!

𝑙&
'

Figure 1: The architecture of (a) Bi-directional Transformer
(BiTrans) and (b) Multi-scale holistic Fusion (MHF).

Table 2: Parameter details.

m d lji , li, l
′
i gji , gi, g

′
i Q,K, V Q,K, V

size 2 - (d×H ×W) (d× h× w) (HW × d) (hw × d)

i = 0 - 16 16 × 32 × 32 16× 2 × 2 1024 × 16 4 × 16
i = 1 - 32 32 × 16 × 16 32 × 2 × 2 256 × 32 4 × 32
i = 2 - 64 64 × 8 × 8 64 × 2 × 2 64 × 64 4 × 64
i = 3 - 128 128 × 4 × 4 128 × 2 × 2 32 × 128 4 × 128

sampling token maps. In Tab. 2 we provide details for the
parameters used.

3. Additional Results
3.1. Reconstruction Accuracy

In Figs. 2 and 3, we provide additional qualitative re-
sults on various ShapeNet categories. We train our model
with 3 and 4 primitives for cars and airplanes, respectively,
for accurate abstractions. We compare to CvxNets [2] us-
ing 25 primitives and NP [8] using 5 primitives, which em-
pirically leads to their best performance. We observe that
DeFormer yields more geometrically accurate and seman-
tically meaningful abstractions than NP and CvxNets with
multiple primitives.

3.2. Computational Cost

We compare the computational cost of DeFormer against
the baseline methods in the main paper. We report the num-
bers measured on one NVidia A100 GPU.
Training. We use the same batch size and number of prim-
itives for all methods and measure the time cost to perform
100 forward/backward passes. We load the data using a sin-

(a) Input (b) Target (c) CvxNets (d) NP (e) DeFormer

Figure 2: Abstraction visualization on cars compared to
SOTA primitive-based methods, including CvxNets [2] and
NP [8] with 25 and 5 primitives, respectively. Ours applies
3 primitives (1 for body and 2 for front and rear wheels) and
achieves better part consistency.

(a) Input (b) Target (c) CvxNets (d) NP (e) DeFormer

Figure 3: Abstraction visualization on airplanes compared
to SOTA primitive-based methods, including CvxNets [2]
and NP [8] with 25 and 5 primitives, respectively. Ours ap-
plies 4 primitives (1 body, 2 wings, and 1 tail) and achieves
better part consistency. Reconstruction performance for fine
details is indicated with arrows.

gle batch and keep it in GPU memory to remove the over-
head of data loading. The time consuming is given in Tab. 3.
Inference. The network takes one input image with size
224 × 224 for inference. In Tab. 3 we report the average
inference time over 100 runs.

4. Additional Ablation Study

We train DeFormer on three categories of ShapeNet us-
ing ResNet18 [3] and the proposed MsBiT backbone, re-
spectively and compare the shape reconstruction accuracy

Table 3: Computational cost of DeFormer, compared to the
baseline methods.

Suq H-Suq CvxNet NP DeFormer

Train. time/batch (ms) 48.64 63.50 84.36 256.19 371.79
Memory (GB) 6.15 8.21 7.47 10.52 21.70
Infer. time (s) 11.23 11.78 7.87 8.85 15.36

in terms of IoU and Chamfer-L1 distance.

Table 4: Ablation study on the network backbone. We train
DeFormer with the proposed MsBiT and ResNet18 on three
categories of ShapeNet. We provide results in terms of IoU,
Chamfer-L1 distance.

Backbone ResNet18 MsBiT

Category table lamp sofa table lamp sofa

IoU (↑) 0.535 0.417 0.715 0.546 0.422 0.729
Chamfer-L1 (↓) 0.097 0.148 0.102 0.081 0.141 0.088

References
[1] François Chollet. Xception: Deep learning with depthwise

separable convolutions. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
1251–1258, 2017. 2

[2] Boyang Deng, Kyle Genova, Soroosh Yazdani, Sofien
Bouaziz, Geoffrey Hinton, and Andrea Tagliasacchi. Cvxnet:
Learnable convex decomposition. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 31–44, 2020. 3

[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 3

[4] Timothy N Jones and Dimitris N Metaxas. Image segmenta-
tion based on the integration of pixel affinity and deformable
models. In Proceedings. 1998 IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition (Cat.
No. 98CB36231), pages 330–337. IEEE, 1998. 1

[5] Michael Kass, Andrew Witkin, and Demetri Terzopoulos.
Snakes: Active contour models. International journal of
computer vision, 1(4):321–331, 1988. 1

[6] Shichen Liu, Tianye Li, Weikai Chen, and Hao Li. Soft ras-
terizer: A differentiable renderer for image-based 3d reason-
ing. In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pages 7708–7717, 2019. 1

[7] Dimitris N Metaxas. Physics-based deformable models: ap-
plications to computer vision, graphics and medical imag-
ing, volume 389. Springer Science & Business Media, 2012.
1

[8] Despoina Paschalidou, Angelos Katharopoulos, Andreas
Geiger, and Sanja Fidler. Neural parts: Learning expres-
sive 3d shape abstractions with invertible neural networks.

In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 3204–3215, 2021. 3

[9] Alex P Pentland. Perceptual organization and the representa-
tion of natural form. In Readings in Computer Vision, pages
680–699. Elsevier, 1987. 1

[10] Demetri Terzopoulos and Dimitri Metaxas. Dynamic 3 d
models with local and global deformations: deformable su-
perquadrics. IEEE Transactions on pattern analysis and ma-
chine intelligence, 13(7):703–714, 1991. 1

