
A. Proof of Lemma 1

Lemma 1 serves as the basis of our analysis, indicating
the fundamental incompetence for PCL, while hinting an
i.i.d. solution towards density-invariance.

Proof. Since we need to investigate the effect of loss on a
single feature fS

i , we need to marginalize the effect of fT
j .

We start by selecting a specific first feature f̂S
i , regarding

it as a constant, and take out all correspondences for the
specific feature, which is Ĉ = {(f̂S

i , f
T
j ) ∈ C}. We focus

on a part of the loss involving this specific f̂S
i , referred to

as a function L̂pos(f̂
S
i ), in equation 8.

L̂pos(f̂
S
i ) =

1

|Ĉ|

∑
(f̂S

i ,fT
j )∈Ĉ

max(||f̂S
i − fT

j ||p −m, 0)

(8)
Next, we marginalize the effect of fT

j through sampling
infinitely many fT

j . Assuming f̂S
i , f

T
j are i.i.d., then count-

less fT
j approximates the distribution D. We can write out

the limitation of L̂pos when |Ĉ| → ∞ as Equation 9.

lim
|Ĉ|→∞

L̂pos(f̂
S
i ) = EfT

j ∼Dmax(||f̂S
i , f

T
j ||p −m, 0) (9)

Equation 9 is convex and has a single global minimum
at f̂ which solely depends on D (cases where a minimal
plateau exists is impossible in real setup). The effect of min-
imizing Lpos converges in probability to all features f ∼ D

heading towards the same location f̂ in feature space.

lim
|Ĉ|→∞

L̂pos(f̂
S
i ) = E(f̂S

i ,fT
j )∈Ĉmax(||f̂S

i , f
T
j ||p −m, 0)

(10)
Otherwise, if f̂S

i , f
T
j are non-i.i.d., it is impossible to

marginalize fT
j , and the loss in Equation 10 is the expec-

tation on a subset of correspondences Ĉ that is correlated
with f̂S

i . All likely features have different loss formulation
with different global minimums. This means that different
features will converge towards different locations.

Note that the loss we investigate is a partial represen-
tation of the complete loss function, as negative losses are
not considered. However, the result is highly likely true
even with negative loss added. That is because positive loss
controls the sub-structure inside a specific positive cluster,
while negative loss controls the large-scale relative structure
between different positive clusters, and the negative loss
should not disturb positive structures too much when the
feature representation stabilizes after the first few epochs.

B. Detailed Experiment Setup

B.1. Dataset Preparation

Two kinds of datasets are used in this paper, i.e., pair-
wise contrastive learning (PCL) datasets and group-wise
contrastive learning (GCL) datasets. The PCL datasets con-
tain point cloud pairs that are sampled with a random dis-
tance interval b denoting the distance between two LiDARs.
The distance b is randomly picked for every point cloud pair,
and we refer to a sub-divided dataset where b1 ≤ b ≤ b2
as [b1,b2]. Both during training and testing, we always re-
set the random seed to 0 before finding the required point
clouds to produce the exact same point cloud pairs for re-
peatable results. To create the GCL datasets, we sample
central point clouds C at a fixed interval of 11 frames, then
randomly sample neighboring point clouds around each
central point cloud according to the process described in
Section 3.3. The GCL datasets are never used during test-
ing.

Following Huang et al. [20], we define overlap O be-
tween a pair of point clouds S ∈ RN×3, T ∈ RM×3 as a
subset of S according to Equation 11.

O =

{
piS ∈ S

∣∣∣∣∣ min
P j

T∈T
∥piS − pjT ∥2 ≤ δ

}
(11)

The overlap denotes the part of S where at least a cor-
responding point in T could be found through nearest-
neighbor search of radius δ = 0.45m. S and T are down-
sampled using a voxel size of 0.3m before the search. Over-
lap ratio is then defined as |O|

|S| . All point cloud pairs with
≤ 30% overlap ratio in [5,20], [20,30], [30,40], [40,50]
datasets are collected on KITTI and nuScenes, referred to as
LoKITTI and LoNuScenes, respectively. They represent the
hardest cases for the distant point cloud registration task.

We follow previous literature [5] to divide Odome-
tryKITTI with sequences 0-5 for training, 6-7 for validation,
and 8-10 for testing. NuScenes is divided sequentially with
the first 700 sequences for training, the next 150 sequences
for validation and the last 150 sequences for testing.

B.2. Metrics

Both traditional and new metrics are used during eval-
uation. Following previous work [16, 20, 5, 9], we re-
port 3 metrics including Registration Recall (RR) defined
as percentage of pairs successfully registered, Relative Ro-
tation Error (RRE) defined as the geodesic distance between
estimated rotation and ground-truth rotation, and Relative
Translation Error (RTE) defined as the euclidean distance
between estimated translation and the ground-truth trans-
lation. We forge a new metric as the average of RR on
[5, 10], [10, 20], [20, 30], [30, 40], [40, 50] datasets, referred



Dataloader Inference RANSAC Total

FCGF 6.2 45.4 576.1 627.7
GCL+Conv (ours) 5.4 44.2 523.0 572.6

Predator 635.1 78.7 66.3 780.1
GCL+KPConv (ours) 637.5 64.4 76.4 778.3

Table 6: Inference time (ms) analysis on LoKITTI. GCL
is always more lightweight than their existing counterparts
with the same backbone (FCGF: Conv; Predator: KPConv)
in terms of inference time.

to as mean Registration Recall (mRR), which measures the
overall registration performance.

B.3. Network Structure

We adopt the popular Res-UNet network structure [9],
and implement it on both sparse voxel convolution [8]
and KPConv [41], referred to as GCL+Conv and
GCL+KPConv, respectively. As depicted in Figure 10, both
GCL+Conv and GCL+KPConv adopt three layers of skip
connections with a roughly symmetric encoder-decoder de-
sign. Features are all normalized onto a unit sphere after the
final layer.

B.4. Loss Configuration

There are several parameters that need specifying for
network convergence. The distance margins are set to
m1 = 0.1,m2 = 0.1,m3 = 0.2,m4 = 1.4. The loss terms
are reweighed differently on two datasets, where we set
λ1 = λ2 = λ3 = 1 on KITTI and λ1 = λ2 = 0.7, λ3 = 1
on nuScenes.

C. Additional Experiments

Inference time. We list the inference time breakdown for
FCGF, Predator, GCL+Conv and GCL+KPConv in Table
6. The inference time of GCL is always lower than coun-
terparts with the same backbone. While GCL+KPConv
performs faster registration, it requires extended data load-
ing time due to underlying KPConv architecture conduct-
ing repeated nearest neighbor calculation. In contrast,
GCL+Conv runs faster during data loading and inference,
and the extended RANSAC registration time can be reduced
given recent progress on fast registration pipelines [4]. The
focus of GCL is to propose a contrastive learning based
training method which can be plugged into any existing
registration pipelines that incorporate feature matching in
it [10, 15, 32, 1, 50, 9, 5, 20, 51], and GCL is the gen-
eral solution to the distant registration problem on all these
methods since they are all based on either Voxel Convolu-
tion [8] or KPConv [41]. We conclude that GCL is a uni-
versal lightweight feature extraction method.

Loss
LoKITTI KITTI [10,10]

RR RTE RRE RR RTE RRE

C 53.8 32.5 1.41 99.0 7.8 0.27
F 18.3 38.9 1.92 98.8 7.6 0.25
PP 53.8 27.2 1.28 99.2 7.6 0.26
PV 45.0 29.1 1.39 98.6 7.6 0.25
BF+PP 45.7 31.1 1.40 98.6 7.6 0.26
F+PV 50.5 28.4 1.30 99.2 7.5 0.25
F+PP 55.4 27.8 1.28 99.2 7.9 0.26

Table 7: Ablation of loss designs for GCL+KPConv on
KITTI [10,10] and LoKITTI, measured by RR (%), RTE
(cm), and RRE (◦). F+PP is selected according to perfor-
mance on LoKITTI. The gray column is the main metric.
Dataset mRR [5,10] [10,20] [20,30] [30,40] [40,50]

FCGF [9] 77.4 98.4 95.3 86.8 69.7 36.9
Predator [20] 87.9 100.0 98.6 97.1 80.6 63.1
SpinNet [1] 39.1 99.1 82.5 13.7 0.0 0.0
D3Feat [5] 66.4 99.8 98.2 90.7 38.6 4.5
CoFiNet [52] 82.1 99.9 99.1 94.1 78.6 38.7
GeoTransformer [35] 42.2 100.0 93.9 16.6 0.7 0.0

GCL+KPConv (ours) 89.6 100.0 98.2 93.2 88.3 68.5
GCL+Conv (ours) 93.5 99.0 98.8 96.1 91.7 82.0

Table 8: Comparison of RR (%) between SOTA methods
and GCL on five KITTI [b1, b2] datasets, with increas-
ing LiDAR distance and registration difficulty. Registration
metrics are loosened to 5◦, 2m compared to Table 1. The
mean RR is displayed in the first column.

Dataset mRR [5,10] [10,20] [20,30] [30,40] [40,50]

FCGF [9] 39.5 87.9 63.9 23.6 11.8 10.2
Predator [20] 51.0 99.7 72.2 52.8 16.2 14.3

GCL-Conv (ours) 85.5 99.3 97.7 91.8 77.8 60.7
GCL-KPConv (ours) 90.3 99.9 98.5 96.1 85.4 71.6

Table 9: Comparison of RR (%) between SOTA methods
and GCL on five nuScenes [b1, b2] datasets, with increas-
ing LiDAR distance and registration difficulty. Registration
metrics are loosened to 5◦, 2m compared to Table 2. The
mean RR is displayed in the first column.

Loss ablation with GCL+KPConv. We ablate various
loss components for GCL+KPConv and display the regis-
tration performance of on both KITTI [10,10] and LoKITTI
in Table 7. Similar to results with GCL+Conv, Finest Loss
in combination with a positive loss performs the best among
all methods, as F+PP achieves both the best RR of 55.4% on
LoKITTI and 99.2% KITTI [10,10]. All methods perform
roughly the same on the close point cloud dataset KITTI
[10,10]. With the KPConv backbone, however, Finest loss
alone does not lead to a decent performance on LoKITTI
as it does with the voxel convolution backbone. We select
F+PP as the optimal configuration for GCL+KPConv dur-
ing all other experiments.
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Figure 10: Network structures for GCL. Batch Normalization and ReLU activation are used after all Conv blocks except
for the last layer, while batch normalization and leaky ReLU are used in KPConv blocks with a 0.1 slope. Voxel Convolution
is parameterized by the kernel size, stride s, and output dimension d. The kernel size and stride are both omitted for Conv1D.
Non-deformable KPConv [41] is parameterized by kernel point offset radius R, kernel point influence extent E, and feature
dimension d.

Performance comparison under loose registration cri-
terion. We additionally provide the comparison between
GCL and SOTA methods on both KITTI and nuScenes un-
der a loose registration criterion of RTE ≤ 2m,RRE ≤
5◦, where the registration recalls are generally elevated
due to the loosen criterion. The mean RR is shown in
the first column. As listed in Table 8, GCL+Conv and
GCL+KPConv achieve the highest overall performance on
KITTI with 89.6% (+1.7%) and 93.5% (+4.6%) mRR over
Predator [20], respectively. Furthermore, GCL methods
receive greater improvements on distant scenarios includ-
ing [30,40] and [40,50] on KITTI. On the other hand,
GCL methods beat SOTA methods by a larger margin on
nuScenes than on KITTI, achieving 85.5% (+34.5%) and
90.3% (+39.3%) mRR for GCL+Conv and GCL+KPConv
compared to Predator [20], respectively on nuScenes ac-
cording to Table 9. We mark that GCL methods beat SO-
TAs on every sub-divided dataset on nuScenes, and that
GCL+KPConv always performs the best. We conclude that,
under a loose registration criterion, GCL still achieves giant
improvements comparable to the scenario under a stricter
criterion, setting a new SOTA for the distant point cloud
registration problem.
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Figure 11: Distribution of correspondences in ETH
dataset with PCL and batch size = 1, where the x and y
coordinates of a dot denotes the distance from a correspon-
dence to both LiDARs. The red stripes denote the condi-
tional distribution of y on a fixed x. Density correlation still
exists in ETH, where linear structures are less dominant.

Generalization to ETH. We demonstrate the generaliza-
tion results from KITTI [14] to ETH [33] in Table 10, by
shrinking the voxel sizes from 0.3m to 0.05m during testing
without any finetuning. ETH is an outdoor dataset featuring
a majority of vegetation over linear structures. However,
density correlation still exists in ETH, as depicted in Fig-
ure 11, which confirms the wide applicability of our analy-
sis in Section 3.2. It can be seen that GCL effectively im-
proves the generalization capability of two baseline back-



Gazebo Wood
Avg.

Summer Winter Autumn Summer

Predator 21.2 20.8 23.5 30.4 24.0
FCGF 40.2 26.0 54.8 67.2 47.0
GCL+KPConv (ours) 46.2 28.4 56.5 72.0 50.8
GCL+Conv (ours) 46.7 30.8 61.7 73.6 53.2

Table 10: Generalization test from KITTI to ETH, by
shrinking voxel size from 0.3m to 0.05m during testing. The
FMR scores at τ1 = 10cm, τ2 = 5% are compared.

bones, where GCL+Conv achieves the best overall FMR of
53.2% (+6.2%). We conclude that GCL can generalize to
other scenarios other than autonomous driving.

D. Discussion and Limitation
More explanation on non-i.i.d. PCL positives. A pair
of close-range point clouds also have non-i.i.d. positives,
as their positives have roughly the same density, i.e., their
densities are positively correlated. This may sound weird,
as close-range LiDAR point cloud registration has already
been well-solved [20, 52]. Actually, non-i.i.d. positives
will not hinder close-range registration problems because
the problem is so simple that even a density-variant fea-
ture extractor will solve the problem nicely. Now consider
a hand-crafted density-variant feature that upon the input
coordinate (x, y, z), outputs the vector length of the coor-
dinate

√
x2 + y2 + z2. Intuitively, this density-variant fea-

ture combined with RANSAC will likely produce a decent
guess for two concentric (i.e., extremely close) point clouds.
However, this special solution will not work for distant sce-
narios with severe density mismatch, which means that a
more powerful solution like GCL is needed to solve the dis-
tant point cloud registration problem.

Training time. As listed in Table 4, GCL has a linearly
growing training time consumption w.r.t. ϕ. This is mainly
caused by increased data loading time where repeated near-
est neighbor searches are carried out from the central point
cloud to all neighborhood point clouds. However, the heavy
time consumption is a necessary cost for building the posi-
tive groups. Luckily, only training time is affected for GCL
and the testing time remain unchanged when registering two
point clouds.

Information exchange. Information exchange serves as
a key source of improvement for SOTA registration meth-
ods [20, 52, 44, 25, 35]. It is carried out between a pair of
point clouds, which calls for a non-trivial extension of GCL
that contains ϕ+1 point clouds. Note that features after the
exchange will vary according to different companion point
clouds. Consequently, a naive traversal of C2

ϕ+1 pairs for

GCL will not only suffer from O(ϕ2) complexity but also
have to deal with ϕ different features for a single point. We
hope to extend the information exchange module (mainly
composed of cross-attention) to a group-wise version in fu-
ture work.


