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In this supplementary material, Sec. 1 provides the the-
oretical analysis of the distribution properties of diffraction
in the frequency domain. Sec. 2 illustrates the detailed ar-
chitecture of the color transform (CT) module. Sec. 3 de-
scribes more training details. Sec. 4 provides experiments
to verify the effectiveness of the dual transfer unit (DTU).
Sec. 5 shows spectral visualization comparisons. Sec. 6 an-
alyzes the limitations of FSI. Finally, Sec. 7 shows more
comparison results.

1. Theoretical Analysis

As described in the main paper, light emitted from a
light source across a display with arranged organic light-
emitting diodes (OLEDs) is diffracted, which will produce
the periodic decreasing spectral biases captured by the sen-
sor [5, 11]. In this section, we provide a detailed analysis of
the theory involved.

Suppose there is a light emitted from a light source that
crosses a display with arranged OLEDs. The effective aper-
ture function a(x, y) could be formulated as:

a(x, y) = g(x, y)p(x, y), (1)

where g(x, y) and p(x, y) represent lens aperture and dis-
play openings, respectively. From basic Fourier optics, the
point spread function (PSF), formulated as k(x, y), can be
written as the squared magnitude of the scaled Fourier trans-
form of the effective aperture function, that’s to say:

k(x, y) ∝ |A(x, y)|2 , (2)

where A(x, y) is the Fourier transformation of the a(x, y)
in Eq. (1). In an under-display camera (UDC), since each
display pixel is identical, the display openings are always
periodic. If we denote m(x, y) to be the opening pattern
as pertaining to a single pixel, the overall display openings

p(x, y) can be constructed with copies of m(x, y):

p(x, y) = m(x, y) ∗
r∑ c∑

δ(x− rT )δ(y − cT ), (3)

where δ(x) is the Dirac delta function, r and c means row
and col in lens aperture, the display pixels are repeating at a
periodicity of T along both axes.

Since the fact that the power spectral density and auto-
correlation are Fourier pairs, from Eq. (2), the Fourier trans-
form of k(x, y) can be expressed as an auto-correlation
function of a(x, y), formulated as:

K(x, y) = ACa(x, y). (4)

As shown in Eq. (1) and Eq. (3), the auto-correlation of
a(x, y) depends on the lens aperture g(x, y) as well as the
per-pixel display opening m(x, y), when the pitch of the
display T is significantly smaller than the lens aperture,
there are multiple display pixels within the aperture. In
this scenario, the auto-correlation ACa at small displace-
ments (x, y) becomes repeating copies of ACm, the auto-
correlation of m(x, y), scaled by the number of copies of
m(x, y) within the lens aperture. The auto-correlations as-
sociated with T/P-OLED displays are shown in Fig. 4 in
[11]. The periodic structures with peaks and nulls can be
clearly observed due to a consequence of the periodicity of
the display tiling. Here, we directly see the effect of the
per-pixel pattern m(x, y) and its periodic tiling in the in-
vertibility of the PSF.

2. Architecture Details
As described in Sec. 3.5 of the main paper, degradation

caused by multiple thin-film layers in the display usually
produces color shifts. Therefore, inspired by the solutions
in white balance [1, 4], we use a lightweight U-Net [6] to
predict a set of coefficients to adjust the color temperature
by matrix transformation.



In this section, we illustrate the detailed architecture of
the lightweight U-Net as shown in Fig. 1. The entire net-
work is based on the U-Net architecture, where the number
of channels in each layer is marked. We follow the exist-
ing approach [3, 7] to extract features by stacking some
Smoothed Dilated Residual Blocks on each scale. Each
block contains atrous (or dilated) convolutions to expand
the network’s receptive field without loss in spatial resolu-
tion. Besides, inserting a convolutional layer before each
dilation convolution enables computational and parameter
efficiency via shared separable kernels. The parameters of
the color transform modules are 1.03M.
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Figure 1. Network structure of color transform (CT) module.

3. More Training Details
As described in Sec. 3.3 of the main paper, the FSI con-

sists of a series of stacked FSJ modules, and we grouped
the two FSJ modules using a skip connection. To further
improve the model performance, we add the loss function
between the output and the ground truth after each group.
This approach can effectively facilitate feature learning for
each part.

4. Experimental Analysis of DTU
As described in Sec. 3.4 of the main paper, we present

a Dual Transfer Unit (DTU) to enable selective interac-
tion and joint learning of the frequency and spatial features
within the modules. In particular, we first compress the
features into a low-dimensional embedding space, and then
learn them with convolution in the vertical and horizontal
directions. To demonstrate the superiority of this approach,
we compared other methods that have the ability to locate
interactive features as shown in Tab. 1.

As shown in Tab. 1, our approach has higher perfor-
mance for comparable parameters compared to the two typ-

ical attention mechanisms Spatial Attention [10] and DFC
Attention [8]. Besides, since the self-attention mechanism
in Transformer [9] relies on high-dimensional features to
model the correlation between different regions, more pa-
rameters are required. Our method allows the network to
facilitate the learning of complementary features with little
cost and is much simpler than others.

Method #P PSNR SSIM LPIPS DISTS
w/o - 45.79 0.9935 0.0116 0.0183

Self-Attention [9] 10.9k 45.96 0.9936 0.0110 0.0152
Spatial Attention [10] 1.9k 45.96 0.9936 0.0110 0.0152

DFC Attention [8] 1.7k 46.00 0.9938 0.0110 0.0150
DTU(Ours) 1.7k 46.05 0.9938 0.0109 0.0147

Table 1. Comparison between different methods of obtaining
transfer gates in DTU on the SYNTH [2] dataset.

5. Spectral Visualization

To validate the capability of our method in reconstruct-
ing the frequency spectrums, we visualize the frequency
spectrums of images and patches restored by different meth-
ods in Fig. 3. It can be observed that FSI has a great im-
provement in visual quality and the spectrums are also most
similar to the ground truth. For example, in the first case,
our FSI effectively eliminates the spectral bias generated by
diffractions. The superior performance is owed to the learn-
ing capability of FSI in the frequency domain.

6. Limitation Analysis

Our work is superior in recovering regular textures
(e.g., the fourth row of Fig. 7 in the main paper) through
frequency domain learning. However, for the recovery of
the irregular texture loss in large areas, there are still some
limitations. In this section, we visualize the failure cases of
FSI in Fig. 2. Irregular textures over large areas are anoma-
lous in frequency (i.e., ), so the reconstruction of the spec-
trum cannot effectively recover such content. It is worth
noting that FSI still achieves greater gains than other meth-
ods through its powerful feature learning capability.

FSI(Ours) Ground TruthUDC Image

Figure 2. The failure cases when irregular texture loss occurs.



7. More Visualization Results
To further verify the effectiveness of our method, we

show more comparison results among the proposed FSI and
other advanced methods on three different benchmarks. The
results on P-OLED [12], T-OLED [12], and SYNTH [2]
are shown in Fig. 4, Fig. 5, and Fig. 6, respectively.
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Figure 3. Visualization of the frequency spectrums for the entire image and patch regions. The method is shown at the bottom of each case.
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Figure 4. Visual results on P-OLED [12] dataset. The method is shown at the bottom of each case. Zoom in to see better visualization.
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Figure 5. Visual results on T-OLED [12] dataset. The method is shown at the bottom of each case. Zoom in to see better visualization.
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Figure 6. Visual results on SYNTH [2] dataset. The method is shown at the bottom of each case. Zoom in to see better visualization.
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