
Few-Shot Dataset Distillation
–Supplementary Materials–

Songhua Liu Xinchao Wang*

National University of Singapore
songhua.liu@u.nus.edu, xinchao@nus.edu.sg

In this document, we provide additional materials on the
proposed method for few-shot dataset distillation (DD) that
cannot be accommodated in the main paper due to the page
limitation. We first provide detailed algorithms for both our
method and baselines for comparison. Then, more quanti-
tative and qualitative results are included.

A. More Implementing Details

A.1. Our Method

Pre-training. Here, we provide detailed algorithmic im-
plementation to Alg. 2 of the main paper, the translative
pre-training algorithm for distillation space. The key de-
sign of the translative pre-training pipeline lies in the sepa-
ration of two stages: dataset distillation in an arbitrary but
fixed neural network and the translation to the desired space.
In practice, instead of the version shown in the main pa-
per that nests the two steps in one loop, the two stages are
also conducted independently. Results distilled in the pre-
defined network are cached for multiple random subsets so
that they can be loaded directly and used repeatedly in the
pre-training stage, which improves the training efficiency.
The detailed algorithms for the caching stage and the pre-
training stage are elaborated in Alg. 1 and Alg. 2 respec-
tively. Readers can refer to Tab. 1 of the main paper for the
configurations of hyper-parameters.

Adaptation. Given a pre-trained translator, it requires
a small number of adaptation steps in general for the tar-
get dataset. The detailed adaptation algorithm is shown in
Alg. 3. The hyper-parameters are summarized in Tab. 1 of
the main paper.

Translator. The detailed architecture of the translator in
this paper is shown in Fig. 1. It adopts an auto-encoder
structure. To better inherit the useful information in the
input, the network learns the difference between desired
output and input. Notably, due to the fully-convolutional
structure, the pre-trained translator can also be adapted to
datasets with different resolutions beyond the one used dur-

*Corresponding Author.

Algorithm 1 Caching Stage.
Input: Z: A Large Dataset; θ: An Arbitrary Random Neu-

ral Network; T : Number of Update Steps for Synthetic
Data; α: Learning Rate for Synthetic Data; N : Num-
ber of Cached Subsets; Cmax and Cmin: Maximal and
Minimal Number of Classes in a Subset; M : Maximal
Number of Images in a Subset; Imax: Maximal Num-
ber of Images in a Synthetic Dataset.

Output: D: A Dataset Used for Pre-training.
1: D ← ∅;
2: for N subsets in parallel do

▷ Data preparation.
3: Select an integer C randomly from [Cmin, Cmax];
4: Select C classes randomly from Z;
5: Select an integer I randomly from [1, ⌊ Imax

C ⌋];
6: XT , YT , XS , YS = [], [], [], [];
7: for 1 ≤ c ≤ C do
8: XT ,c ← ⌊MC ⌋ random images in class c;
9: YT ,c ← OneHot([c]× ⌊MC ⌋);

10: XS,c ← XT ,c[: I], YS,c ← YT ,c[: I];
11: XT ← [XT ;XT ,c], YT ← [YT ;YT ,c];
12: XS ← [XS ;XS,c], YS ← [YS ;YS,c];
13: end for

▷ Dataset distillation in one network.
14: for T steps do
15: w∗

S,θ ← fθ(XS)
⊤(fθ(XS)fθ(XS)

⊤)−1YS ;
16: L = ∥fθ(DSA(XT ))w

∗
S,θ − YT ∥2;

17: XS ← XS − α∇XSL;
18: YS ← YS − α∇YSL;
19: end for
20: D ← D ∪ {(Idx(XT ), XS , YS)};
21: end for

ing pre-training. Please refer to the following section for
details.

A.2. Baselines

Benchmark. The baseline algorithm, used in Fig. 1 and
Tab. 2 in the main paper, and Tab. 1 here, is shown in Alg. 4.



Algorithm 2 Pre-training Stage.
Input: Z: A Large Dataset; Θ: Distribution for Initializing

Neural Networks; η: Learning Rate for Translator; D:
Dataset Cached by Alg. 1; B: Batch Size.

Output: ω: A Pre-trained Translator.
1: Initialize ω randomly;
2: repeat
3: for B samples in parallel do
4: (Idx,XS′ , YS)← a random sample from D;
5: Fetch XT , YT from Z with Idx;
6: XS ← Gω(XS′);
7: Randomly sample θ′ ∼ Θ;
8: w∗

S,θ′ ← fθ′(XS)
⊤(fθ′(XS)fθ′(XS)

⊤)−1YS ;
9: ∇i

ω ← ∇ω∥fθ′(XT )w
∗
S,θ′ − YT ∥2;

10: end for
11: ω ← ω − η 1

B

∑B
i=1∇i

ω;
12: until Converge

C
onv 128

B
N

R
eLU

AvgPool

C
onv 256

B
N

R
eLU

AvgPool

C
onv 512

B
N

R
eLU

C
onv 256

B
N

R
eLU

U
pSam

ple

C
onv 128

B
N

R
eLU

C
onv 3

Figure 1. Architecture of our translator.

In experiments, we maintain the same total number of up-
date steps for synthetic data. When the number of networks
R is 1, it corresponds to the setting of 1 Net in Tab. 1. And
when R = T , it is the setting of Baseline.

Relationships with state of the arts. The algorithm
shown in Alg. 4 is based on neural feature regression
(NFR) [6]. It first uses a neural network as a feature extrac-
tor to map the original input to a feature space and then per-
forms kernel ridge regression. On the one hand, it behaves
essentially the same as RFAD [5] and the only difference
is that it uses a new random neural network in each step of
updating synthetic data. On the other hand, compared with
FRePo, it does not update networks via current synthetic
data or store the networks in a pool. That is why FRePo
can further improve performance in many cases. However,
these related works have no constraint on the total num-
ber of networks, which negatively affects the efficiency of
dataset distillation, as illustrated in Fig. 1 of the main paper.
We are thus motivated by this observation and dedicated to
studying the problem of few-shot dataset distillation which
only adopts a limited number of networks.

Algorithm 3 Adaptation Stage.
Input: (XT , YT ): A Target Dataset to be Distilled; Θ: Dis-

tribution for Initializing Neural Networks; θ: The Ran-
dom Neural Network Used in the Cachine Stage; η:
Learning Rate for Translator; I: A List of Numbers of
Images per Class for Adaptation; T : Number of Update
Steps for Synthetic Data; α: Learning Rate for Syn-
thetic Data; ω0: A Pre-trained Translator; S: Number
of Adaptation Steps for Translator; B: Batch Size.

Output: ω: An Adapted Translator.
1: D ← ∅;
2: for I in I in parallel do

▷ Synthetic data initialization.
3: XS , YS = [], [];
4: for 1 ≤ c ≤ C do
5: XS,c ← I random images in class c;
6: YS,c ← OneHot([c]× I);
7: XS ← [XS ;XS,c], YS ← [YS ;YS,c];
8: end for

▷ Dataset distillation in one network.
9: Xθ

T ← fθ(XT );
10: for T steps do
11: w∗

S,θ ← fθ(XS)
⊤(fθ(XS)fθ(XS)

⊤)−1YS ;
12: XS ← XS − α∇XS∥Xθ

T w
∗
S,θ − YT ∥2;

13: YS ← YS − α∇YS∥Xθ
T w

∗
S,θ − YT ∥2;

14: end for
15: D ← D ∪ {(XS , YS)};
16: end for

▷ Adapt the translator to the desired space.
17: ω ← ω0;
18: for S steps do
19: for B samples in parallel do
20: (XS′ , YS)← a random sample from D;
21: XS ← Gω(XS′);
22: Randomly sample θ′ ∼ Θ;
23: w∗

S,θ′ ← fθ′(XS)
⊤(fθ′(XS)fθ′(XS)

⊤)−1YS ;
24: ∇i

ω ← ∇ω∥fθ′(XT )w
∗
S,θ′ − YT ∥2;

25: end for
26: ω ← ω − η 1

B

∑B
i=1∇i

ω;
27: end for

B. More Experimental Results

Results on larger datasets. Although trained with only
100 classes and 32 × 32 resolution at most during pre-
training, we demonstrate that it is also feasible for the pre-
trained translator to be adapted to target datasets with more
classes and higher resolutions. Following the settings in
the main paper, Tab. 1 shows experimental results on Im-
ageNet1k [2] with 1k classes under 32 × 32 resolution and
ImageNette [3] with 10 classes under 128× 128 resolution.
For ImageNet1k, although the performance is bottle-necked



Dataset IPC Metric Baseline 1 Net Bi-Level w/o Pre-Train w AE w/o Ada w Ada

ImageNet1k
(32× 32)

1 Acc. (%) 6.9±0.1 6.4±0.1 4.4±0.1 6.7±0.1 6.8±0.1 7.0±0.1 7.2±0.1

Time (sec.) 5393.1 788.3 789.8 2158.0 2158.0 789.4 2158.0×2.5

2 Acc. (%) 7.7±0.1 7.1±0.1 5.8±0.1 7.0±0.1 7.1±0.1 7.8±0.1 8.3±0.1

Time (sec.) 6134.2 1529.3 1530.9 3205.6 3205.6 1530.6 3205.6×1.9

ImageNette
(128× 128)

1 Acc. (%) 33.8±1.0 27.0±0.7 25.6±0.3 26.7±1.3 34.3±0.3 25.4±1.6 41.4±0.8

Time (sec.) 745.6 676.9 37.4 229.7 229.7 38.0 229.7×3.2

10 Acc. (%) 57.5±0.3 48.4±1.4 39.3±0.6 50.3±0.1 52.1±0.8 42.0±0.2 59.1±0.6

Time (sec.) 1010.9 942.2 80.5 275.0 275.0 81.2 275.0×3.7

Table 1. Results of the proposed method in more challenging datasets with more classes and higher resolutions. The black subscript
indicates the standard deviation over multiple evaluations. The red subscript denotes the times of acceleration compared with Baseline.

Algorithm 4 Baseline for Comparison.
Input: (XT , YT ): A Target Dataset to be Distilled; Θ:

Distribution for Initializing Neural Networks; I: Num-
ber of Images per Class; R: Number of Networks; T :
Number of Update Steps for Synthetic Data; α: Learn-
ing Rate for Synthetic Data.

Output: (XS , YS): A Distilled Dataset.
▷ Synthetic data initialization.

1: XS , YS = [], [];
2: for 1 ≤ c ≤ C do
3: XS,c ← I random images in class c;
4: YS,c ← OneHot([c]× I);
5: XS ← [XS ;XS,c], YS ← [YS ;YS,c];
6: end for

▷ Dataset distillation in R networks.
7: for R networks do
8: Randomly sample θ ∼ Θ;
9: Xθ

T ← fθ(XT );
10: for ⌊TR⌋ steps do
11: w∗

S,θ ← fθ(XS)
⊤(fθ(XS)fθ(XS)

⊤)−1YS ;
12: L = ∥Xθ

T w
∗
S,θ − YT ∥2;

13: XS ← XS − α∇XSL;
14: YS ← YS − α∇YSL;
15: end for
16: end for

by the challenge of scalability in DD [1], the improvement
over baseline methods is consistent and it achieves ∼ 2×
acceleration compared with Baseline. For ImageNette, we
first conducted distillation under the 32 × 32 resolution in
the pre-defined network and then up-sample the distilled re-
sults to 128 × 128 resolution with bi-linear interpolation
as input to the translator. Due to the discrepancy in reso-
lutions, the performance of results after translation is worse
than that of 1 Net in this case, which is distilled in a network
directly under 128× 128 resolution. However, after a small
number of adaptation steps, with 3 ∼ 4× acceleration, it
can even surpass Baseline which is distilled by enormous

1 10 20 30 40 50
IPC of CIFAR10

40

45

50

55

60

65

Te
st

 A
cc

ur
ac

y 
(%

)

w/o Ada
Partial Ada
w Ada

1 3 5 7 10 12
IPC of ImageNette

25

30

35

40

45

50

55

60

Te
st

 A
cc

ur
ac

y 
(%

)

w/o Ada
Partial Ada
w Ada

Figure 2. It is feasible for translators after being adapted on some
IPCs, e.g., 1 IPC and 50 IPC in CIFAR10 (left), and 1 IPC and 10
IPC in ImageNette (right), to be generalized to the unseen IPCs
during adaptation.

networks under the large resolution.
More results on cross-IPC generalization. Here, we

provide more results on cross-IPC generalization for an
adapted translator on some seen IPCs. As shown in the red
curve of Fig. 2(left), on CIFAR10 [4], we adapt the transla-
tor on 1 and 50 IPCs and report the performance for a vari-
ety of IPCs including both seen and unseen ones. As refer-
ences, we also report the results without adapting the trans-
lator and adapting the translator on the specific IPC only
in the green and yellow curves respectively. We can find
that the performance on unseen IPCs is close to or some-
times even slightly better than that by adapting specifically.
Similarly, in Fig. 2(right), we conduct experiments in the
same way on ImageNette. For the red curve, the translator
is adapted on 1 and 12 IPCs. We observe that the gener-
alization is satisfactory and can approach the yellow curve
when IPC is large. In all cases, it works significantly better
than no adaptation, which indicates that the adaptation stage
helps the translator encode useful knowledge of the whole
target dataset, not limited to the knowledge required by the
seen IPCs.

More qualitative visualization. We provide more qual-
itative visualizations on CIFAR10 and ImageNette datasets
in Fig. 3 and Fig. 4 respectively, including results distilled
by the pre-defined network, results produced by the pre-
trained translator without adaptation, and results produced
by the translator after adaptation as seen and unseen IPCs.



The observations are consistent with those in the main pa-
per: the pre-trained translator mainly modifies global styles
and colors while the adapted translator adds more local de-
tails, and the learned textures in the translator are also trans-
ferable to unseen IPCs.

References
[1] Justin Cui, Ruochen Wang, Si Si, and Cho-Jui Hsieh. DC-

BENCH: Dataset condensation benchmark. In Proceedings
of the Advances in Neural Information Processing Systems
(NeurIPS), 2022. 3

[2] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li
Fei-Fei. Imagenet: A large-scale hierarchical image database.
In 2009 IEEE conference on computer vision and pattern
recognition, pages 248–255. Ieee, 2009. 2

[3] Fastai. Fastai/imagenette: A smaller subset of 10 easily clas-
sified classes from imagenet, and a little more french. 2

[4] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009. 3

[5] Noel Loo, Ramin Hasani, Alexander Amini, and Daniela Rus.
Efficient dataset distillation using random feature approxima-
tion. In Proceedings of the Advances in Neural Information
Processing Systems (NeurIPS), 2022. 2

[6] Yongchao Zhou, Ehsan Nezhadarya, and Jimmy Ba. Dataset
distillation using neural feature regression. arXiv preprint
arXiv:2206.00719, 2022. 2



An Arbitrary Net
Acc. 50.5%

Translated Results w/o Ada
Acc. 54.7%

Translated Results w Ada
Acc. 59.2%

Translated Results w Ada (Generalized)
Acc. 56.8%

Figure 3. Qualitative analysis of results produced by our method for IPC 10 on CIFAR10.



An Arbitrary Net
Acc. 40.1%

Translated Results w/o Ada
Acc. 42.0%

Translated Results w Ada
Acc. 59.1%

Translated Results w Ada (Generalized)
Acc. 58.6%

Figure 4. Qualitative analysis of results produced by our method for IPC 10 on ImageNette.


