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A. Appendix
A.1. Pre-training

The settings for pre-training strictly follows those in
MAE[8] and PixMIM[13], with details shown below:

config value
optimizer AdamW [15]
base learning rate 1.5e-4
weight decay 0.05
optimizer momentum β1, β2=0.9, 0.95 [3]
batch size 4096
learning rate schedule cosine decay [14]
warmup epochs [7] 40

Table 1: Pre-training setting of MFFMAE and MFFPixMIM

A.2. Fine-tuning and linear probing

We also stick to the settings in MAE[8] for the ViT-B[5]
model concerning fine-tuning and linear probing. Since our
objective is to measure the enhancement brought by MFF
and not attain the state-of-the-art (SOTA) performance, we
employ the same settings as ViT-B without any specific ad-
justments for ViT-S.

config value
optimizer LARS [18]
base learning rate 0.1
weight decay 0
optimizer momentum 0.9
batch size 16384
learning rate schedule cosine decay
warmup epochs 10
training epochs 90
augmentation RandomResizedCrop

Table 2: Linear probing setting of MFF MAE and MFF
PixMIM.

A.3. Object detection and segmentation in COCO

All these settings also strictly follow those in MAE[8]
but choose the commonly used 2× settings, which fine-

config value
optimizer AdamW[15]
base learning rate 1e-3
weight decay 0.05
optimizer momentum β1, β2=0.9, 0.999
layer-wise lr decay [4, 1] 0.75
batch size 1024
learning rate schedule cosine decay
warmup epochs 5
training epochs 100
augmentation RandAug (9, 0.5) [9]
label smoothing [17] 0.1
mixup [20] 0.8
cutmix [19] 1.0
drop path [11] 0.1

Table 3: End-to-end fine-tuning setting of MFF MAE, MFF
PixMIM

tunes the model on COCO[12] for 25 epochs.

A.4. Semantic segmentation in ADE20K

We stick to the settings used in MAE[8] and
PixMIM[13], fine-tuning the pre-trained model end-to-end
for 16k iterations with a batch size of 16.

A.5. Selected indices of the ablation study

Inspired by the results of the pilot experiment depicted in
Figure 1 of the main paper, we choose layer0 as the shallow
layer, and layer10 as the deep layer for the ablation experi-
ment outlined in Table 3(a). Additionally, for ablation study
in Table 3(b), we have selected additional two, four, and
ten layers, evenly distributed between layer0 and the output
layer (layer11). The detailed indices for Table 3(b) is shown
in the Table 4.

In addition, similar to the pilot experiment in Figure 1 of
the main paper, we observe the weight for each layer of all
experiments in Table 3(b) of the main paper. Just as shown
in Figure 1, no matter in which case, the model increasing
relies on these shallow layers for the reconstruction tasks,
indicating the significance of injecting low-level informa-
tion into the output layer.



Figure 1: Model increasingly relies on shallow layers.

num layers indices
1 11
2 0,11
4 0,4,8,11
6 0,2,4,6,8,11

12 0,1,2,3,4,5,6,7,8,9,10,11

Table 4: Detailed indices for Table 3(b) of the main pa-
per. We try to make the additionally selected indices are
evenly distributed between the first layer and last layer.

A.6. Transfer learning

We also study transfer learning where we pre-train on
ImageNet-1K and fine-tune on several smaller datasets.
We follow the training recipe and protocol in DINO[2].
MFF MAE consistently outperforms MAE on CIFAR10, CI-
FAR100, and Stanford Cars. As shown in the following
table, MFF MAE consistently improves MAE on all datasets.

Method Epoch CIFAR10 CIFAR100 Cars
MAE 800 98.4 89.4 94.3
MFF MAE 800 98.6 (+0.2) 90.3 (+0.9) 94.7 (+0.4)

Table 5: Transfer learning on smaller datasets.

A.7. Feature-based MIM does not Suffer from being
Biased toward Low-level Feature

To supplement the findings in Figure 6 of the main pa-
per, we apply multi-level feature fusion (MFF) to EVA[6]
and MILAN[10], and evaluate their performance with linear
probing, fine-tuning and semantic segmentation. Detailed
results are shown below:

Method Epoch lin seg ft
EVA 400 69.0 49.5 83.7
MFFEVA 400 68.9 49.4 83.8
MILAN 400 79.9 52.7 85.4
MFFMILAN 400 79.7 52.9 85.0

As shown in the table above, MFF brings marginal improve-
ments to feature-based MIMs, consistent with the findings
in Figure 6 of the main paper.

A.8. The Effect of Deep Supervision

To exclude the influence of deep supervision[16], we
detach all shallow layers before fusing with the last
layer (MFFdetach

MAE ), ensuring that gradients do not propagate
through these shortcuts to the shallow layers. As shown in
the table below, deep supervision alone does not improve
MAE, and MFF’s improvements come from alleviating the
problem of being biased toward high-freq components.

Method model epoch lin seg ft
MFFMAE ViT-B 800 67.0 47.9 83.6
MFFdetach

MAE ViT-B 800 66.8 (-0.2) 48.0 (+0.1) 83.5(-0.1)
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