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1. NeRF 3D Instance Segmentation Dataset

Leveraging 3D-FRONT [1] and the data generating ap-

proach of [4], we produce a new benchmark for instance-

level 3D scene understanding curated for NeRF. 3D-

FRONT is a large-scale synthetic indoor scene dataset, from

which NeRF-RPN renders RGB images and layout con-

figuration and tailors it as a benchmark for object detec-

tion task in NeRF. As shown in Table 1, apart from multi-

view images with camera poses and ground truth 3D bound-

ing boxes, 2D ground truth instance segmentation and 3D

ground truth instance masks on grids with class labels are

included in our new dataset, which can be used for 3D seg-

mentation in NeRF and other research areas.

Dataset NeRF-RPN Ours

# scenes 152 1015

RGB images ✓ ✓

Camera poses ✓ ✓

3D bounding boxes ✓ ✓

2D inst seg GT - ✓

3D voxelized inst seg GT - ✓

Table 1: A comparison between the 3D-FRONT NeRF dataset in

NeRF-RPN and ours.

2. NeRF-RCNN Architecture

In this section, we describe the architecture of NeRF-

RCNN in detail. NeRF-RCNN is a proposal-based 3D mask

prediction model that imitates the architecture of Mask-

RCNN [3]. The input of NeRF-RCNN are the 3D radiance

and density grid sampled from a pre-trained NeRF, and the

Region of Interests (RoI) provided by NeRF-RPN [4]. For

each RoI, we set the ground truth box with the largest inter-

section over union (IoU) as its regression target.

The first part of NeRF-RCNN is a backbone identical

to [4] for feature extraction. The second part takes the fea-
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ture of each RoI as input and predicts the 3D bounding box,

classification probability and discrete 3D mask. To obtain

the feature of a single proposal on a feature map, we extend

RoIAlign [3] with one more dimension, making all RoI fea-

tures consistent. Aligned features are fed into two heads,

namely box head and mask head. Box head first flattens the

inputs for fully connected layer encoding and then separates

into box branch and classification branch. The box branch

further regresses a RoI to a more accurate bounding box for

each class, while the classification branch predicts the clas-

sification scores. We follow similar network architecture in

[3] by changing the 2D convolution and strided convolution

layers to their corresponding 3D version. The loss function

of box head consists of two parts:

Lcls =
1

|N |

∑

i∈N

LBCE(pi,p
∗
i ), (1)

Lreg =
1

|Np|

∑

i∈Np

L∑

k=1

p∗i,kLsmooth(ti,k, t
∗
i ), (2)

where pi is the predicted classification score vector after

sigmoid, pi,k is the k−th dimension of pi, ti,k is the box

offsets of class k , p∗
i , t

∗
i are ground-truth targets, N is

the set of sampled RoIs, Np is the set of positive sam-

ples, and L is the number of classes including background.

LBCE and Lsmooth denote the binary cross entropy(BCE)

loss and the smooth L1 loss in [2] respectively. Note that

for an RoI associated with ground truth class c, only the

c−th box regression BCE loss contributes to the total loss.

ti,k = (tx,k, ty,k, tz,k, tw,k, tl,k, th,k) is the box head out-

put. The relationship between ti,k and bounding box pa-

rameters x, y, z, w, h, l is defined similarly to [4]:

tx,k = (xk − xa)/wa, ty,k = (yk − ya)/la,

tz,k = (zk − za)/ha, tz,k = log(wk/wa),

tl,k = log(lk/la), th,k = log(hk/ha),

(3)

where xk, yk, zk are the center coordinate, wk, lk, hk are

the lengths of sides, and xa, ya, za, wa, la, ha are the cor-

responding parameter of the RoI.



The mask head is a convolutional neural network which

predicts L binary masks with size m×m×m for each RoI.

m = 5 is used for the box head, and m = 10 for the mask

head. We also apply the sigmoid function as the activation.

The loss for the mask head LM is defined as

LM =
λ

|Np|

∑

i∈Np

L∑

k=1

p∗i,kLp(mi,k,m
∗
i ), (4)

where m∗
i is the ground truth mask and mi,k is the predicted

mask of class k. Similar to box regression, only the mask

BCE loss corresponding to the ground truth label is included

in LM .

The total loss of Instance-NeRF L is

L = Lcls + λ1Lreg + λ2Lmask, (5)

where λ1, λ2 are hyper-parameters.

3. Qualitative Results of Ablation

We present additional visualization and qualitative com-

parisons to demonstrate the effectiveness of our proposed

mask refinement stage.

Although adding instance label regularization can help

smooth the instance field, the segmentation quality of the

preliminary results can still be unsatisfactory, especially on

the silhouette of the objects. Besides, regularization can

sometimes smooth out detailed structures in the segmen-

tation, like thin chair legs or lamp stands. As illustrated

in Figure 1, performing 2D mask refinement using Cas-

cadePSP on the Instance-NeRF results and using it to guide

further training can significantly improve the segmentation

quality on the object boundaries.

GT w/o refinement w/ refinement

Figure 1: Ablation on 2D mask refinement. The first row shows

the separate mask for the nightstand, which is used as the input to

CascadePSP. The separate masks after refinement are then com-

posed into a single segmentation map to further optimize the in-

stance field, the results of which are presented in the bottom row.

4. Additional Qualitative Comparison

We demonstrate extra qualitative comparisons between

our method and other related methods as mentioned in the

main paper. The results are given in Figure 2. Please watch

the video at https://www.youtube.com/watch?

v=wW9Bme73coI for more qualitative comparison results.
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Figure 2: Additional Comparison. This figure illustrates the comparison between ours and other methods. For each group of comparison,

rows from top to bottom are i. ground truth RGB images or the rendered RGB images from the NeRF models, ii. semantic segmentation,

and iii. instance segmentation. The instance segmentation results from Semantic-NeRF are left empty as it does not produce instance-level

information.
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Figure 2: Additional Comparison (cont.) This figure illustrates the comparison between ours and other methods. For each group of

comparison, rows from top to bottom are i. ground truth RGB images or the rendered RGB images from the NeRF models, ii. semantic

segmentation, and iii. instance segmentation. The instance segmentation results from Semantic-NeRF are left empty as it does not produce

instance-level information.


