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1. Training Details of Confidence Pixel Selection Network (CPSN)
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Figure 1. Diagram of the training process of the CPSN.

The training process of the CPSN is shown in Fig.1. We sample five segmentation models trained for different training
iterations of the network f(θ1) and f(θ2) respectively and add a certain rate of dropout to these models. Considering that
the two networks f(θ1) and f(θ2) are trained for 200K iterations and that the prediction errors mainly appear in the first half
of the whole training stage, we empirically sample models at these training iterations to ensure the diversity of simulated
segmentation errors, which are described by these two model sets F (θ1) and F (θ2) as follows:
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where the superscript of each model represents the number of training iterations it was trained.
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We then use predictions from these models to simulate various segmentation errors. Using this simulation data, we train
a robust CPSN to locate segmentation errors and generate highly confident pixels. To further improve the CPSN robustness,
we add dropout with a certain rate to the last two layers of these models so that their predictions contain more noise.

Given the input image I , affinity map A and affinity entropy map H , the predicted binary error map B with the same
size as A, which is denoted by B = CPSN (I ⊕A⊕H), where ⊕ is the concatenation operation. We then adopt the binary
cross-entropy loss for SCPN, LSCPN is described as
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where RL
a is the annotated affinity region, mn,i is 1 if the prediction of pixel affinity an,i is not confident and 0 otherwise.

The SCPN network has the same network as the segmentation networks, i.e., 3D U-Net [5] and 2D Residual U-Net [1]
for the 3D volumetric datasets (AC3, CREMI-C) and 2D datasets (CVPPP, BBBC039V1), respectively. We train the SCPN
networks using Adam optimizer [4] with β1 = 0.9 and β2 = 0.999, a learning rate of 1e − 4, and a batch size of 2 on one
NVIDIA TitanXP GPU for 200K iterations. In each iteration, we randomly sample a model from F (θ1) and F (θ2) to predict
affinity map with errors.

2. Size Distribution of Annotated Instances
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Figure 2. 3D annotated masks with different size distributions on the AC3 dataset. The instances on the left and right have smaller and
larger sizes than the median size of all instances on the dataset. The instances in the middle are randomly annotated for experiments in the
main text.

In the sparse instance-level supervision setting of the main text, we randomly annotate the complete instances without
considering the size of each instance. In this section, we validate the impact of the size distribution of randomly annotated
instances on performance. We statistic the median size of all instances on the AC3 dataset, and make two sets of annotated
instances with a comparable number of annotated voxels: one set where the size of each instance is smaller than the median
size, while the other set is the opposite.

We visualize the 3D annotated masks with different size distributions in Fig. 2. The corresponding quantitative segmen-
tation results are shown in Table 1. The results based on larger and smaller annotated instances perform worse than those
based on randomly annotated instances. The network can learn more diverse instance morphological structure information
from randomly annotated instances and have better generalization on the testset.

size small random large

VOI↓ / ARAND ↓ 1.038 / 0.085 0.903 / 0.065 0.958 / 0.078

Table 1. Comparison of different segmentation results trained by instance annotation with different size distributions.



3. Visualization of Affinity Maps and Corresponding Entropy Maps
In this section, we provide more visualization of affinity maps and corresponding entropy maps, where low-entropy and

high-entropy pixels indicate reliable and unreliable affinity predictions, respectively.
The final instance segmentation results are generated from the affinity maps by different post-processing algorithms.

The 3D results are generated by the Waterz [2] post-processing, which integrates a watershed algorithm to generate over-
segmentation and a percentile-based agglomeration algorithm to merge over-segmentation. This post-processing takes into
account the computational efficiency and performance of the electronic microscopy volumetric images, whose input is the
nearest neighbor affinity maps along three directions i.e., the lateral directions (denoted by x-axis and y-axis) and the axial
direction (denoted by z-axis).

We give the affinity maps and corresponding entropy maps of the AC3 dataset in Fig. 3 and the Cremi-C dataset in Fig. 4.
Following [5], the resolution of the input patch to the network is set as 18×160×160, which is obtained by random cropping
from the provided volume. Thus, the adjacent output patches of the entropy map are not continuous, which has no effect on
the performance since we perform the affinity cross supervision for each patch.

The 2D results are generated by the Mutex [6] post-processing, which optimizes a long-range affinity graph to cluster
pixels into instances. Following [6, 3], the input of the post-processing includes multiple short-range and long-range affinity
maps along two directions (denoted by x-axis and y-axis), and the graph edges span 1,3,5,9,27 pixels. We provide two
examples of affinity graph representation for the BBBC039v1 dataset in Fig. 5 and the CVPPP dataset in Fig. 6, respectively.

Method #Params (M) FLOPs (GMAC)

f(θ1) 1.48 87.29
f(θ2) 1.48 87.47

Table 2. Computational Complexity on two beanches.

4. Computational Complexity Analysis
The parameters and FLOPs for two branches in our method with an input size of 18 × 160 × 160 are shown in 2. f(θ2)

has a slightly higher complexity with similarity learning. Note that, however, we only use one branch f(θ2) during inference.
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Figure 3. Two visualized examples of affinity maps in x, y, and z directions and corresponding entropy maps on the AC3 dataset.
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Figure 4. Two visualized examples of affinity maps in x, y, and z directions and corresponding entropy maps on the Cremi-C dataset.
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Figure 5. A visualized example of affinity maps in x and y directions and corresponding entropy maps on the BBBC039v1 dataset.



Raw x-1

G
ro

un
dt

ru
th

y-1 x-3 y-3 x-5

y-5 x-9 y-9 x-27 y-27

x-1 y-1 x-3 y-3 x-5

y-5 x-9 y-9 x-27 y-27

x-1 y-1 x-3 y-3 x-5

y-5 x-9 y-9 x-27 y-27

Pr
ed

ic
tio

n
En

tro
py

 M
ap

Figure 6. A visualized example of affinity maps in x and y directions and corresponding entropy maps on the CVPPP dataset.


