Learning Image-Adaptive Codebooks for Class-Agnostic Image Restoration
(Supplementary material)

A. Semantic Grouped Classes

As described in the paper, we aggregate the 150 classes
in ADE20K dataset [4] into five super-classes to train our
basis codebooks. The overall details of how we divide the
five sub-datasets are shown in Fig. [T} Although this is not a
rigorous categorization, the codebook visualization in Sec-
tion 3.1 empirically demonstrates that the grouping is mean-
ingful to some extent.

B. Network Architectures

In conjunction with the encoder-decoder network used
in our AdaCode, we elaborate on the detailed architectures
of the encoder F, the decoder GG, and the discriminator D.
For FE and G, we adopt the same autoencoder as VQGAN
[2] in stage I and the same structure as FeMaSR [[1] in stage
[&III. For D, we adopt the same U-Net discriminator with
spectral normalization as Real-ESRGAN [3].

C. More Results
C.1. Ablation on Codebook Size

We conduct experiments to empirically select the num-
ber of code entries in each basis codebook, as shown in
Table. Considering the tradeoff between performance
and computation cost, we set the basis codebooks’ size as
{512,256, 512, 256,256} x 256.

C.2. Codebook Visualization

We visualize all the codes in our five basis codebooks in
Fig. 2] As we discussed in Section 5, it is yet unclear how
many basis codebooks and how many code entries in each
codebook we need. It is also reflected by the visualization
that there might be some redundancies in the codebooks.

C.3. Qualitative Results

We show more results and comparisons for image recon-
struction, super-resolution, and image inpainting in Fig. [3
Fig. {] and Fig. [5} which empirically demonstrate the effec-
tiveness of AdaCode.

Table 1: Stage I reconstruction performance on each super-
class with different number of code entries. The chosen size
is marked in red.

Codebook Size | PSNR | SSIM | LPIPS
256 x 256 24.096 | 0.667 | 0.149
512 x 256 24260 | 0.684 | 0.144
256 x 256 26.565 | 0.788 0.110
512 x 256 26.630 | 0.789 | 0.110
256 x 256 27.014 | 0.723 0.124
512 x 256 27.693 | 0.743 0.110
256 x 256 26.677 | 0.748 0.126
512 x 256 26.937 | 0.755 0.127
256 x 256 29914 | 0.838 0.097
512 x 256 29.662 | 0.837 0.098
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Figure 1: Groups of 150 classes in ADE20K dataset [4].
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Figure 2: Visualization of all the basis codebooks.
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Figure 3: More results on Image Reconstruction.
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Figure 4: More results on Super-Resolution.
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Figure 5: More results on Image Inpainting.



