
Learning to Identify Critical States for Reinforcement Learning from Videos
Supplementary Materials

Haozhe Liu1†, Mingchen Zhuge1†, Bing Li1B, Yuhui Wang1, Francesco Faccio1,2

Bernard Ghanem1, Jürgen Schmidhuber1,2,3
1AI Initiative, King Abdullah University of Science and Technology

2The Swiss AI Lab IDSIA/USI/SUPSI, 3NNAISENSE
{haozhe.liu, mingchen.zhuge, bing.li, yuhui.wang,

francesco.faccio, bernard.ghanem, juergen.schmidhuber}@kaust.edu.sa

Abstract

This appendix provides the implementation details of our
Deep State Identifier. In Section 1, we provide the pseudo-
code for the Deep State Identifier, its network architecture,
and the hyperparameters used during training. Then, Sec-
tion 2 discusses the datasets we collected and our experi-
mental protocol. Finally, Section 3 provides additional ex-
perimental results related to the ablation study and the com-
parison with EDGE [7] on MuJoCo.

1. Implementation Details
This section details our implementation of the proposed

method. We implement our method and conduct our experi-
ments using PyTorch [12]. All experiments were conducted
on a cluster node equipped with 4 Nvidia Tesla A100 80GB
GPUs.

The proposed method—while quite effective—is con-
ceptually simple. The training pipeline can be written in
25 lines of pseudo-code:

1 import torch as T
2 def cs_detector_train(input_states, labels):
3 mask = cs_detector(input_states)
4 loss_reg = lambda_r*T.linalg.norm(mask,ord=1)
5 masked_states = mask * input_states
6 output = return_predictor(masked_states)
7 loss_sub = lambda_s*criterion(output,labels)
8 reverse_mask = torch.ones_like(mask) - mask
9 reverse_states = reverse_mask * input_states

10 output_r = return_predictor(reverse_states)
11 confused_label = torch.ones_like(output_r)

*0.5 #binary classification case
12 loss_vic = lambda_v * criterion(output_r,

confused_label)

† Equal Contribution.
B Corresponding Author.
Accepted to ICCV23.

13 loss_total = loss_reg + loss_sub + loss_vic
14 loss_total.backward()
15 optimizer_cs.step()
16 def return_predictor_train(input_states, labels):
17 output = return_predictor(input_states)
18 loss_d = criterion(output,labels)
19 loss_d.backward()
20 optimizer_return.step()
21 def main_train(input_states, labels):
22 optimizer_cs.zero_grad()
23 cs_detector_train(input_states, labels)
24 optimizer_return.zero_grad()
25 return_predictor_train(input_states, labels)

We use two potential network architectures in our work,
3DCNN [17], and CNN-LSTM [6, 8, 10], to implement our
Deep State Identifier. Tables 1 and 2 show the specification
of the corresponding architectures. We use 3DCNN archi-
tecture in Table 3 and employ LSTM structure in the other
empirical studies.

Table 1. The specification of the 3DCNN-based Neural Net-
work adopted in this paper. In-Norm refers to the Instance Nor-
malization, 3D Conv. is the 3D convolutional Layer, and F.C.
refers to the fully connected layer. In the last layer, the [return
predictor/critical state detector] has a different architecture speci-
fied in the last column.

3DCNN Channel Filter Stride In-Norm Activation
3D Conv. 12 → 32 (1,3,3) (1,2,2) False Relu
3D Conv. 32 → 64 (1,3,3) (1,1,1) True Relu
3D Conv. 64 → 128 (1,3,3) (1,2,2) False Relu
3D Conv. 128 → 128 (1,3,3) (1,1,1) True Relu
3D Conv. 128 →256 (3,2,2) (1,1,1) False Relu

Avg Pooling - - - - -
F.C. 256 → 512 - - - -
F.C. 512 → [2/12] - - - [-/sigmoid]

To train the critical state detector and return predictor, we
use the Adam optimizer [9] with β1 = 0.9 and β2 = 0.999.
The learning rate is set as 1× 10−4 and the weight decay is
1×10−4. The input length of 3DCNN is 12 frames and is a
partial observation (7× 7 pixels) of the environment [5, 4].



Table 2. The specification of the CNN-LSTM Neural Network
in this paper. In the last layer, the critical state detector outputs
a vector with the same length as the input (i.e., 256→1). The
return predictor estimates a scalar for the whole episode (i.e., 256
× length →2)

CNN-LSTM Channel Filter Stride In-Norm Activation
2D Conv. 3 → 32 3 2 False Relu
2D Conv. 32 → 64 3 1 True Relu
2D Conv. 64 → 128 3 2 False Relu
2D Conv. 128 → 128 3 1 True Relu
2D Conv. 128 → 256 2 1 False Relu

Avg Pooling - - - - -
Input Hidden Bi-Direct. Activation

LSTM 256 128 True -
F.C. [length×256] → [2/length] [-/sigmoid]

The remaining hyper-parameters λs, λr, and λv are set to 1,
5× 10−3 and 2 respectively.

Figure 1. Illustration of the Deep State Identifier for policy
comparison. We modify the return predictor as a binary classi-
fier. Its training data comprises pairs {si, ci}, where si represents
a trajectory and ci ∈ R is a class label indicating whether it be-
longs to policy-A or policy-B. By exploiting the return predictor,
the critical state detector can directly localize the states that pri-
marily explain the difference between policy-A and policy-B.

Fig. 1 shows how we can adapt the return predictor to
find the critical frame that explains the difference in behav-
ior between the two policies. We can train the return predic-
tor to identify which of the two policies generates a specific
trajectory.

2. Experimental details
Critical States Discovery. We use a GridWorld environ-
ment (MiniGrid-KeyCorridorS6R3-v0) to collect a dataset
(Grid-World-S) to test the accuracy of the critical state de-
tector. Data is collected by acting in the environment us-
ing an optimal policy based on a depth-first search algo-
rithm (DFS). Additional data is collected from a random-

exploring policy. Since, in this environment, one can find
critical states by visual inspection (they correspond to the
states immediately before or after the action of opening
doors or picking up keys), we can directly test the accuracy
of the proposed method. We use the F1 score as a metric.
Policy Comparison by Critical States. Here, we collect a
dataset, Grid-World-M, for our experiments on policy com-
parison. The labels in Grid-World-M are the policies that
collected the corresponding episode. We use two policies
to collect data: Policy-A is the optimal policy used to col-
lect Grid-World-S, while Policy-B is an exploratory policy.
Efficient Attack using Critical States. Here we use adver-
sarial attacks on Atari-Pong to validate whether the detected
states are critical. Following the same protocol as Edge [7],
we use a trained policy downloaded from https://
github.com/greydanus/baby-a3c to collect the
training data. We call the corresponding dataset Atari-Pong-
S. In particular, we collect 21500 episodes for training and
2000 for testing, and we fix the length of each episode as
200. We augment the input by randomly increasing or de-
creasing the length within 50 frames, and the padding value
is set as 0. To validate the generalization of the proposed
method for unseen policies, we then collect another dataset,
denoted Atari-Pong-M. We train policies with different
seeds using the same implementation as Edge [7] from
https://github.com/greydanus/baby-a3c. In
particular, we use ten different policies to collect training
data. In cross-policy (seeds), we use the trained policy on
different random seeds to test the performance. In cross-
policy (steps), we use the policy trained with 80M and 40M
steps for training and testing our method, respectively. In
cross-policy (Arch.), we change the architecture to make the
setting more challenging. In particular, we train our method
using a policy with 32 channels but test it by attacking a
policy trained using 64 channels. The result in each case
is collected by attacking the agent for 1500 episodes using
three random seeds.
Policy Improvement. We test the potential of our method
to improve policy performance in the Atari-Seaquest envi-
ronment. We first train the policies based on DQN follow-
ing the implementation of Tianshou [18]. Then we use the
trained policies to collect a dataset called Atari-Seaquest-S,
consisting of 8000 trajectories for training and 2000 trajec-
tories for testing. The average length of the trajectories is
2652.5, and the average return is 2968.6. We cut the tra-
jectory into subsequences with 200 states for training. To
stabilize the training, we equip an orthogonal regularization
for our method. Considering the output of the predictor is
a matrix, M ∈ Rb×l where n refers to the batch size and
l is the length of m, we drive the model to minimize the
accumulation of MMT . As the critical states of each tra-
jectory are generally with different time steps, this regular-
ization can benefit our approach. We train our Deep State

https://github.com/greydanus/baby-a3c
https://github.com/greydanus/baby-a3c
https://github.com/greydanus/baby-a3c


Figure 2. Visualization of our method with different losses. The number at the top-left corner indicates the confidence score predicted
by the critical state detector, indicating whether the corresponding state is important. (a) Baseline trained with Importance Preservation
loss; (b) Baseline with Importance Preservation loss and Compactness loss. (c) Baseline with Importance Preservation loss and Reverse
loss. None of them can detect critical states effectively.



Table 3. Ablation study for the Deep State Identifier. Clean Acc. refers to the accuracy of the return predictor in the test set; Masked Acc.
is the accuracy of the return predictor with the input (critical states) detected by the critical state detector; R-Masked Acc. is the accuracy
of the return predictor where the masked is inverted (non-critical states are treated as critical and vice versa); L1(Mask) and Var(Mask) are
the L1 norm and the average variance of the output of the critical state detector respectively.

Imp. Loss Com. Loss Rev. Loss 3DCNN CNN-LSTM Clean Acc. (%) ↑ Masked Acc.(%) ↑ R-Masked Acc.(%) ↓ L1(Mask) ↓ Var(Mask) ↑
✓ × × ✓ × 90.07 90.07 44.57 63.74 2 × 10−6

✓ ✓ × ✓ × 91.45 87.71 89.28 8.79 0.01
✓ × ✓ ✓ × 91.45 91.39 76.12 63.73 0.03
✓ ✓ ✓ ✓ × 90.78 89.45 64.55 57.35 0.04
✓ ✓ ✓ × ✓ 98.66 98.44 55.58 41.05 0.12

Figure 3. Sampled observations from an episode collected by our method. The number at the top-left corner indicates the confidence
score predicted by the critical state detector, indicating whether the corresponding state is critical. Our method can localize the critical
states effectively.

Identifier on this video dataset and then test its effectiveness
by re-training a new adaptive multi-step DQN from scratch,
where the critical state detector adaptively determines the
lookahead step. We use our trained critical state detector to
determine the lookahead steps for rapid credit assignment
during re-training.

3. Experimental Results

To justify the effectiveness of the proposed method, we
carry out some additional visualization and analysis. Table
3 shows some statistics of the output of the critical state
detector and return predictor. We observe that the iden-
tified states are few (the L1 Norm is low), and the out-
put of the return predictor does not change when it ignores

Table 4. Sensitivity Analysis of the Deep State Identifier.
We show the F1 score ↑ of our method using different hyper-
parameters on GridWorld-S datasets.

λr(×10−3) 1 2.5 5 7.5 10 Variance
F1 Score 76.69 78.44 80.28 78.26 76.44 1.39

λs 0.5 0.75 1 1.25 1.5 Variance
F1 Score 76.68 77.50 80.28 78.18 78.83 1.22

λv 1.5 1.75 2 2.25 2.5 Variance
F1 Score 77.77 77.04 80.28 78.76 83.78 2.39

non-critical states. If instead, the return predictor observes
only states identified as non-critical, then the performance is
much lower. These results further validate the effectiveness
of the proposed method. We provide additional visualiza-
tion of the performance of our method when using different
losses for the critical state detector. The results are con-



Table 5. Win rate changes of the agent before/after attacks
by following the protocol of EDGE [7] We compare the meth-
ods on two MuJoCo environments: You-Should-Not-Pass game
[3] (MuJoCo-Y) and Kick-And-Defend game [3] (MuJoCo-K).

Method MuJoCo-Y MuJoCo-K

Rudder [1] -32.53 -21.80
Saliency [13, 14, 15] -29.33 -37.87
Attention RNN [2] -33.93 -41.20
Rationale Net [11] -30.00 -7.13
Edge [7] -35.13 -43.47

Ours -45.10 -48.03

sistent with our empirical studies. In particular, Fig. 2(a)
shows that when using only the importance preservation
loss, all the states are considered critical. When adding only
the compactness loss (see Fig. 2(b)) or the reverse loss (see
Fig. 2(c)), the performance is still not satisfactory. The pro-
posed method can precisely detect the critical states only
when using all three losses. Indeed, as shown in Fig. 3, our
method correctly outputs high confidence when the agent
observes critical states (0.73, 0.94, and 0.92) and low confi-
dence (0.6) otherwise.

3.1. Non-Vision Environment

We also tested the performance in non-vision environ-
ments [3] and compared our method with the same methods
in Table ??. As shown in Table 5, our method achieves a
win rate change of -45.10 on the MuJoCo [16] environment
You-Shall-Not-Pass game, surpassing the performance of
EDGE (-35.13) by 28.38%. In the Kick-and-Defense envi-
ronment, our method achieves a win rate change of -48.03,
outperforming EDGE (-43.47) by 10.49%. The consistent
improvement indicates that our method exhibits strong ro-
bustness in non-vision environments.

3.2. Sensitivity analysis

We evaluate the performance of our method using differ-
ent values of hyperparameters λr,λs, and λv . Table 4 shows
that our algorithm has moderate sensitivity to hyperparame-
ters when their values are within a specific range. For exam-
ple, given λs ∈ [0.5, 1.5], the performance variance is only
1.22, indicating stable performance. To determine the opti-
mal hyperparameters, we searched a range of values. The
best hyperparameters found in GridWorld-S were then used
in all other environments.

References
[1] Jose A Arjona-Medina, Michael Gillhofer, Michael Widrich,

Thomas Unterthiner, Johannes Brandstetter, and Sepp
Hochreiter. Rudder: Return decomposition for delayed re-
wards. NIPS, 32, 2019.

[2] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio.
Neural machine translation by jointly learning to align and
translate. ICLR, 2015.

[3] Trapit Bansal, Jakub Pachocki, Szymon Sidor, Ilya
Sutskever, and Igor Mordatch. Emergent complexity via
multi-agent competition. arXiv preprint arXiv:1710.03748,
2017.

[4] Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Salem
Lahlou, Lucas Willems, Chitwan Saharia, Thien Huu
Nguyen, and Yoshua Bengio. Babyai: A platform to study
the sample efficiency of grounded language learning. arXiv
preprint arXiv:1810.08272, 2018.

[5] Maxime Chevalier-Boisvert, Lucas Willems, and Suman
Pal. Minimalistic gridworld environment for gymnasium.
Github, 2018.

[6] Kunihiko Fukushima. Neocognitron: A self-organizing
neural network model for a mechanism of pattern recogni-
tion unaffected by shift in position. Biological cybernetics,
36(4):193–202, 1980.

[7] Wenbo Guo, Xian Wu, Usmann Khan, and Xinyu Xing.
Edge: Explaining deep reinforcement learning policies.
NIPS, 34:12222–12236, 2021.

[8] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term
memory. Neural Comput., 9(8):1735–1780, Nov. 1997.

[9] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

[10] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural net-
works. Communications of the ACM, 60(6):84–90, 2017.

[11] Tao Lei, Regina Barzilay, and Tommi Jaakkola. Rationaliz-
ing neural predictions. EMNLP-IJCNLP, 2017.

[12] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An im-
perative style, high-performance deep learning library. Ad-
vances in neural information processing systems, 32, 2019.

[13] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman.
Deep inside convolutional networks: Visualising image
classification models and saliency maps. arXiv preprint
arXiv:1312.6034, 2013.

[14] Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda Viégas,
and Martin Wattenberg. Smoothgrad: removing noise by
adding noise. arXiv preprint arXiv:1706.03825, 2017.

[15] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic
attribution for deep networks. In ICML, pages 3319–3328.
PMLR, 2017.

[16] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A
physics engine for model-based control. In 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems,
pages 5026–5033. IEEE, 2012.

[17] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani,
and Manohar Paluri. Learning spatiotemporal features with
3d convolutional networks. In Proceedings of the IEEE inter-
national conference on computer vision, pages 4489–4497,
2015.

[18] Jiayi Weng, Huayu Chen, Dong Yan, Kaichao You, Alexis
Duburcq, Minghao Zhang, Yi Su, Hang Su, and Jun Zhu.
Tianshou: A highly modularized deep reinforcement learn-
ing library. JMLR, 23(267):1–6, 2022.


