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(Supplementary Material)

1. Linearization of PnP Solver

Implicit Function Theorem. The implicit function theo-
rem (IFT) [5] states the following:

Given f : Rn+m → Rm a continuously differentiable
function with input (a, b) ∈ Rn × Rm, if a point (a∗, b∗)
satisfies

f(a∗, b∗) = 0 , (1)

and the Jacobian matrix ∂f
∂b (a

∗, b∗) is invertible, then
there exists a unique continuously differentiable function
g(a) : Rn → Rm such that

b∗ = g(a∗) , (2)

and
f(a∗, g(a∗)) = 0 . (3)

The Jacobian matrix ∂g
∂a (a

∗) is given by

∂g

∂a
(a∗) = −

[
∂f

∂b
(a∗, b∗)

]−1

· ∂f
∂a

(a∗, b∗) . (4)

PnP Linearization. Following the same notation as in the
main paper, the PnP solver computes the function

g(x, z,w) = argmin
y

1

2

N∑
i

∥wi ◦ ri∥2 , (5)

where xi is the i-th image 2D point, zi is the i-th 3D point,
wi is the corresponding weight, and

ri = xi − π(zi,y) (6)

is the reprojection residual for the i-th correspondence given
pose y.

Eq. 5 implies that the solution y∗ is the stationary point
of the negative log likelihood (NLL) function

nll(y) =
1

2

N∑
i

∥wi ◦ ri∥2 . (7)

Since y∗ is the stationary point of the NLL function, the
first order derivative of the NLL w.r.t. y∗ should be zero,
i.e.,

∂nll(y)

∂y

∣∣∣∣
y=y∗

= 0 . (8)

Eqs. 1, 2 and 3 in the PnP case can subsequently be
specialized as

f(x,y, z,w)|y=y∗ =
∂nll(y)

∂y

∣∣∣∣
y=y∗

= 0 , (9)

y∗ = g(x, z,w) , (10)

and
f(x, g(x, z,w), z,w)|y=y∗ = 0 . (11)

According to Eq. 4, the gradient of the pose y w.r.t. the
2D locations x at y∗ is

∂y

∂x

∣∣∣∣
y∗

=
∂g(x, z,w)

∂x

∣∣∣∣
y∗

,

= −

[[
∂2nll(y)

∂y2

]−1

· ∂
2nll(y)

∂y∂x

]∣∣∣∣∣
y∗

,

= −H−1 · ∂
2nll(y)

∂y∂x

∣∣∣∣
y∗

,

(12)

with nll(y) defined by Eq. 7.
Given the noisy correspondences {x, z,w}, we com-

pute the perfect correspondences {xp, z,w} with xp,i =
π(zi,ygt) under the ground-truth pose ygt. We then lin-
earize the PnP solver around {xp, z,w} and ygt using the
first-order Taylor expansion as

y = ygt +A(z,w) · rgt , (13)

with
rgt = x− xgt (14)

being the residual vector at ygt, and

A(z,w) = −H−1 · ∂
2nll(y)

∂y∂x

∣∣∣∣
y=ygt,x=xp

. (15)

The Hessian H of the NLL function is also used to compute
the prior loss, as stated in Sec. 3.3 in the main paper.

2. Detailed Results on Gradient Correctness

We further provide the whole correctness curves to show
how the correctness evolves as training progresses.

As illustrated in Fig. 1, at the very beginning, when the
correspondences have large errors, both EPro-PnP [2] and
BPnP [1] have good correctness. However, their correct-
ness drops when the training proceeds. Since the linear-
covariance loss is designed to address this problem, it al-
ways maintains a correctness close to 100%.

3. Details on ZebraPose-based Experiments

Implementation Details. Our coordinate-wise encoding
scheme assigns 3 binary codes to a vertex, eliminating the
look up operation. To reduce the number of binary bits for
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Figure 1. Correctness curves of the PnP layers. A 3D point is
considered to have a correct gradient if moving in the negative
gradient direction leads to a smaller 2D reprojection error. The
LC loss yields almost 100% correctness. The correctness of EPro-
PnP drops slowly, and ending with about 59% correctness. BPnP
drops quickly when training begins, and ends with about 53% cor-
rectness. The dark curves are smoothed versions of the light ones.

Row Method ADD(-S)
A0 ZebraPose [7] 76.91
A1 ZebraPose baseline 75.19
A2 A1 + LC loss 78.06

Table 1. Results of the ZebraPose [7] based experiments on the
LM-O dataset.

prediction, we rotate some of the objects to minimize their
span along the x, y, z directions. We use 7 bits to repre-
sent the coordinate component with the largest span, and
calculate the binary count of the other components based
on their relative span w.r.t. largest one. Specifically, given
the sizes si, i ∈ {x, y, z}, of an object and their maxi-
mum s, the bit count of each component is calculated as
ni = round(n+ log2(si/s)), where n = 7 is the maximum
bit count per component. This is to reduce the unpredictable
bits for flat-shaped objects such as scissors.
Results. As shown in Tab. 1, after switching from the
global vertex encoding to our coordinate-wise encoding
(A0 vs. A1), the performance drops by about 1.7 points.
When the LC loss is applied, the performance drop is com-
pensated, surpassing the original ZebraPose [7].
Visualizations. As illustrated by Fig. 2, the learned weight
map successfully captures the error distribution of the pre-
dicted 3D coordinates in a geometry-aware manner, gen-
erating low weights for code transition regions and high
weights for object endpoint regions.

4. Detailed Results on LM-O and YCB-V

For the LM-O dataset, we provide the detailed compari-
son of ADD(-S) scores with state-of-the-art methods, when
the linear-covariance (LC) loss is applied to GDR-Net and

(b) (e)(a) (c) (d)

Figure 2. Visualizations for the ZebraPose-based model. (a) Vi-
sualizations of the input image patch, decoded object coordinates
and the predicted weight map. (b)-(e) Visualizations of the pre-
dicted masks of coordinate components with the most significant
bit at the left and the x component at the top. The pixels predicted
as background are masked out for clarity.

Object [8] [7] [8]-LC [7]-LC
002 master chef can 41.5 62.6 38.7 51.6
003 cracker box 83.2 98.5 96.2 99.7
004 sugar box 91.5 96.3 98.1 99.4
005 tomato soup can 65.9 80.5 77.6 79.6
006 mustard bottle 90.2 100 77.0 99.7
007 tuna fish can 44.2 70.5 63.2 86.1
008 pudding box 2.8 99.5 81.3 99.1
009 gelatin box 61.7 97.2 81.8 94.9
010 potted meat can 64.9 76.9 68.1 73.9
011 banana 64.1 71.2 71.0 95.8
019 pitcher base 99.0 100 100 100
021 bleach cleanser 73.8 75.9 69.9 85.6
024 bowl* 37.7 18.5 44.1 35.2
025 mug 61.5 77.5 46.2 88.7
035 power drill 78.5 97.4 99.7 99.2
036 wood block* 59.5 87.6 91.7 82.6
037 scissors 3.9 71.8 14.9 56.9
040 large marker 7.4 23.3 29.3 27.8
051 large clamp* 69.8 87.6 80.5 84.4
052 extra large clamp* 90.0 98.0 95.5 99.1
061 foam brick* 71.9 99.3 57.6 91.3
mean 60.1 80.5 70.6 82.4

Table 2. Detailed ADD(-S) scores on YCB-V. We report the
scores of the original baseline methods, GDR-Net [8] and Zebra-
Pose [7], and also the scores after applying our LC loss, respec-
tively (denoted by “-LC”). (*) denotes symmetric objects on which
the ADD-S score is reported.

ZebraPose on LM-O in Tab. 3.
For the YCB-V dataset, we provide the detailed compar-

ison of ADD(-S) scores (Tab. 2) and AUC scores (Tab. 4)
between the baseline methods and the versions where the
LC loss is applied.



Method
RePOSE

[4]
RNNPose

[9]
SO-Pose

[3]
DProST

[6]
GDR-Net

[8]
ZebraPose

[7] GDR-LC Zebra-LC

ape 31.1 37.18 48.4 51.4 46.8 57.9 44.44 61.57
can 80.0 88.07 85.8 78.7 90.8 95.0 89.06 97.35
cat 25.6 29.15 32.7 48.1 40.5 60.6 49.87 64.49

driller 73.1 88.14 77.4 77.4 82.6 94.8 87.81 94.65
duck 43.0 49.17 48.9 45.4 46.9 64.5 56.08 66.82

eggbox* 51.7 66.98 52.4 55.3 54.2 70.9 62.81 71.77
glue* 54.3 63.79 78.3 76.9 75.8 88.7 68.88 86.35

holepuncher 53.6 62.76 75.3 67.4 60.1 83.0 72.89 81.49
mean 51.6 60.65 62.3 62.6 62.2 76.9 66.48 78.06

Table 3. Comparison with the state of the art on LM-O. (*) denotes symmetric objects on which the ADD-S score is reported. “GDR-
LC” denotes the LC loss with the GDR-Net [8] baseline, “Zebra-LC” denotes the LC loss with the ZebraPose [7] baseline.

Method GDR-Net [8] ZebraPose [7] GDR-Net-LC ZebraPose-LC

Metric
AUC of
ADD-S

AUC of
ADD(-S)

AUC of
ADD-S

AUC of
ADD(-S)

AUC of
ADD-S

AUC of
ADD(-S)

AUC of
ADD-S

AUC of
ADD(-S)

002 master chef can *96.3 *65.2 93.7 75.4 85.6, *90.1 57.5, *61.6 88.4 66.9
003 cracker box *97.0 *88.8 93.0 87.8 93.1, *98.1 86.8, *91.6 93.7 88.3
004 sugar box *98.9 *95.0 95.1 90.9 95.9, *99.8 92.3, *97.4 94.7 90.3
005 tomato soup can *96.5 *91.9 94.4 90.1 92.8, *96.2 88.2, *93.0 93.4 89.2
006 mustard bottle *100 *92.8 96.0 92.6 94.1, *97.6 88.2, *93.1 95.1 90.9
007 tuna fish can *99.4 *94.2 96.9 92.6 96.2, *99.9 92.1, *96.9 97.2 94.1
008 pudding box *64.6 *44.7 97.2 95.3 94.4, *99.1 90.4, *95.3 96.7 94.7
009 gelatin box *97.1 *92.5 96.8 94.8 95.1, *99.9 91.7, *96.8 96.7 94.6
010 potted meat can *86.0 *80.2 91.7 83.6 85.8, *89.0 79.6, *83.8 91.3 82.5
011 banana *96.3 *85.8 92.6 84.6 92.2, *97.6 83.2, *88.0 95.3 90.1
019 pitcher base *99.9 *98.5 96.4 93.4 96.6, *100 93.5, *98.4 96.4 93.2
021 bleach cleanser *94.2 *84.3 89.5 80.0 86.3, *91.2 77.0, *82.0 90.5 82.3
024 bowl* *85.7 *85.7 37.1 37.1 83.1, *88.6 83.1, *88.6 63.9 63.9
025 mug *99.6 *94.0 96.1 90.8 92.7, *96.5 83.9, *88.9 96.5 92.3
035 power drill *97.5 *90.1 95.0 89.7 96.1, *99.9 92.6, *97.9 95.4 90.8
036 wood block* *82.5 *82.5 84.5 84.5 87.1, *92.2 87.1, *92.2 81.2 81.2
037 scissors *63.8 *49.5 92.5 84.5 75.8, *80.4 63.5, *67.8 88.3 79.0
040 large marker *88.0 *76.1 80.4 69.5 77.5, *81.8 68.8, *73.5 77.6 68.5
051 large clamp* *89.3 *89.3 85.6 85.6 83.1, *87.9 83.1, *87.9 86.8 86.8
052 extra large clamp* *93.5 *93.5 92.5 92.5 91.4, *95.8 91.4, *95.8 94.6 94.6
061 foam brick* *96.9 *96.9 95.3 95.3 90.0, *94.6 90.0, *94.6 93.2 93.2
mean *91.6 *84.4 90.1 85.3 89.8, *94.1 84.0, *88.8 90.8 86.1

Table 4. Detailed AUC scores on YCB-V. We report the scores of the original baseline methods and the scores after the LC loss is applied.
“GDR-Net-LC” denotes the LC loss with the GDR-Net [8] baseline, “ZebraPose-LC” denotes the LC loss with the ZebraPose [7] baseline.
A (*) after the object name denotes the symmetric objects on which the ADD-S score is reported. A (*) before the AUC score indicates
that the AUC is computed with 11-points interpolation.
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