A. Implementation details of FaCo-Net

This section introduces the network structure and imple-
mentation details of FaCo-Net. As shown in Fig. 7, given
the mouth keypoints P, eye keypoints P¥, and the land-
mark of the subject S, FaCo-Net aims to generate facial de-
tails P¥" that are consistent with the input mouth and eye
keypoints and keeps the target subject style. The compu-
tational process is P = FaCo-Net(S, PM, PF). Firstly,
FaCo-Net uses three encoders to encode the mouth features,
eye features, and target style features, respectively. Each
encoder is implemented using an MLP. Mathematically, the
calculation process is as follows:

PE =9, ((pm ®pe) @ Py), (17)

where p,, = UM(PM) p. = UF(PF), p; =
tile(PF(S)). WM WP WS are encoders for mouth key-
points, eye keypoints, and landmarks of the subject, respec-
tively. W, is the decoder of FaCo-Net. Afterward, the in-
termediate feature is decoded by an MLP-based decoder to
obtain the overall facial keypoints. In order to make the
generated facial keypoints have rich details and avoid over-
smoothing, we add GAN loss as one of the objective func-
tions. Specifically, the overall objective function of FaCo-
Net is defined in Eq.(13) of the main paper. We use a dis-
criminator implemented by an MLP to calculate the GAN
loss. The loss function of the discriminator is Eq.(12) of the
main paper. During the training stage, FaCo-Net and the
discriminator are trained alternately. In the testing process,
the discriminator will be discarded, and only FaCo-Net will
be used for inference.

B. Architecture and loss functions of portrait
renderer

The purpose of portrait rendering is to generate high-
definition and realistic portrait videos. Fig. 8 shows the
network architecture of our portrait renderer. Firstly,
the network concatenates and fuses the conditional fea-
ture map of the ¢-th frame, a reference image, and
the TPE at the ¢-th moment in the channel dimension.
The generator of the network consists of a U-Net with
skip connections. In detail, the network is an 8-layer
UNet-like [37, 22] convolutional neural network with
skip connections in each resolution layer. The resolu-
tion of each layer is (2562, 1282,642, 322 162,82, 42 22)
and the corresponding numbers of feature channels are
(64,128,256, 512,512,512, 512,512). Each encoder layer
consists of one convolution (stride 2) and one residual
block. The decoder of the portrait renderer has a structure
that mirrors the encoder, which consists of 8 residual con-
volutional modules with upsampling layers. There are skip
connections between each encoder layer and its correspond-

ing decoder layer to better propagate feature information
across different levels.

The training process of portrait renderer follows a gener-
ative adversarial training strategy. We use a discriminator D
with a multi-scale PatchGAN architecture. The purpose of
discriminator D is to classify the results generated by gen-
erator G as fake and the real images as real. Specifically,
we use the LSGAN loss as the adversarial loss to optimize
discriminator D:

Lcan(D) = (p* —1)* +p°, (18)

where p*, p represents the classification result of the dis-
criminator when given a real image I; and an image I;
generated by the generator, respectively. For the generator
(G)’s loss function, we draw on [22] and incorporate color
loss, mouth loss, perceptual loss, and feature matching loss
to further optimize the generator’s output. The generator’s
loss is defined as:

Lo = Laan(G)+AcLe+ ALy +ApLp+ArmLrum,

(19)
where Loan(G) = (p — 1)? is the adversarial loss, L¢
is the color loss, £ is the mouth loss, Lp is the percep-
tual loss, and L is the feature matching loss. In our ex-
periments, the hyper-parameters are set based on empirical
values (50, 100, 10, 1). For the color consistency loss, we
use L1 distance, i.e., Lo = |I; — I}|1. To enhance the net-
work’s ability to generate mouth details, we use a mouth
mask to compute the mouth loss, £y = |MI; — MI}|,
where M is the mouth mask. For the perceptual loss, we
use VGG19 to extract perceptual features and minimize the
L1 distance between the generated image features and the
ground truth image features. To improve the stability of
the training process, we also add the feature matching loss
Lry = ZZL ly — y*| in the overall objective function,
where L is the number of spatial layers in the discrimina-
tor. y and y* are the intermediate predictions in D for the
generated image and ground truth, respectively.

C. Data pro-processing pipeline

The purpose of data pre-processing is to extract facial
keypoints, head pose, and other information from videos to
train networks at different stages. The data pre-processing
process is shown in Fig. 9. For the input video frame I,
we first use Mediapipe® to extract 478 3D facial keypoints
(b). Then we use WHENet [53] to estimate the head pose H
of the person. By utilizing the head pose, we align the fa-
cial keypoints with a rigid transformation (i.e., (T) in Fig. 9)
to standard space to align the facial keypoints of different
frames in the video, which are denoted as P¥. We extract

ihttps://qooqle.qithub.io/mediapipe/
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Figure 7: Architecture of FaCo-Net.
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Figure 8: Architecture of portrait renderer.

the keypoints in the eye area and mouth area of P as the
ground truth for training MODA. The eye keypoints P¥ and
mouth keypoints PM are illustrated at (e) and (d) in Fig. 9,
respectively.

To accurately extract shoulder information as a condition
for the torso, we design a semantic-guided 3D torso points
estimation method. Specifically, we first use BiSeNet [47]
to segment semantic information (d) from the image I. Fur-
thermore, we design a torso points extraction algorithm to
estimate key points information for the upper body. The
algorithm consists of the following steps:

1. We first calculate the semantic boundary of the upper
body by computing the boundary between the upper
body semantics and the background/hair semantics.

2. Then, we use morphological operations on the seman-
tic boundary to expand its range, and we extract key
points from the semantic contour using a polygon fit-
ting algorithm.

3. Next, we use a k-nearest neighbors algorithm to con-
strain the number of key points for each side of the
shoulder. k is set to 9 in our experiments.

4. After obtaining the 2D key points of the torso, we use
the average depth information of the face mesh (b) as
the depth information of the torso keypoints.

The visualization result of the extracted body keypoints is
shown in Fig. 9(h). By adding the face mesh (b) and upper
body key points P” (h) projected onto the image coordi-
nate, we obtain the condition image ¢ (i) of the portrait
image.

For the training of the proposed system, given a refer-
ence image of a subject [, we extract the face mesh ob-
tained from a face mesh detector as the style S. The audio
information A and S are used as input, PM, P¥ H, PT
in Fig. 9 are used as the target, to train the first stage of
MODA. The goal of the second stage, FaCo-Net, is to learn
the mapping from S, PF, PM to P¥, so that the generated
PF contains rich details. Finally, the condition image ¢,
input image I, and reference image I, are combined to form
the training data for the portrait renderer.

D. Additional experimental results
D.1. Additional visual comparison results

In this section, we provide additional visual comparison
results among different methods in Fig. 10. MakeltTalk [54]
generates low-resolution videos without head/torso mo-
tions. The results from LSP [22] have some warping effects
and are not 3D consistent. Wav2Lip [29] can generate ac-
curate mouth motions. However, their mouth areas usually
have blurry boundaries and artifacts, which make the video
unnatural. The results of AD-NeRF [10] have blurry bound-
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Figure 10: Additional comparisons among different methods.

aries around shoulders, and the relative movements between
the head and torso are unnatural. Compared to other base-
lines, our system generates portrait videos with correct lip-
sync, natural movements, and high visual quality.

D.2. Running time comparisons

In this section, we provide running time comparisons
among different methods that can generate high-fidelity
videos. All models are trained and tested under the same
condition (i.e., a single RTX 3090 GPU). Results are re-
ported at Tab. 6. Since the compared methods require train-
ing the network separately for each subject, their training

time increases proportionally with the number of subjects.
Our method, on the other hand, can generalize across multi-
ple individuals and therefore can be trained simultaneously
on multiple subjects, resulting in significant time reduction,
especially as the number of training subjects increases (e.g.,
2.5%,11.5x faster than LSP and GeneFace under 3 sub-
jects). During the inference stage, LSP needs to use differ-
ent networks to generate mouth movements and head move-
ments separately, while our method can generate multiple
features to drive the portrait through mapping once, result-
ing in faster overall inference time. Both AD-NeRF and
GeneFace require the use of NeRF to render each frame,



Table 6: Running time comparisons between the proposed method and other methods.

Training time Inference time

Method 1 subject 2 subjects 3 subjects 5s audio 10s audio 30s audio
LSP [22] ~ 14h ~ 30h ~ 50h 15s 26s 70s
AD-NeRF [10] ~ 70h ~ 145h ~ 220h ~ 11min ~ 25min ~ 80min
GeneFace [44] ~ 85h ~ 150h ~ 230h ~ 26min ~ 92min ~ 270min
MODA (Ours) ~ 15h ~17h ~ 20h 12s 25s 62s

which significantly slows down the inference speed. Over-
all, our method achieves faster training and inference speed,
demonstrating the superiority of our proposed approach.





