
Appendix

In this Appendix, Appendix A provides experiment de-
tails and deferred experiment figures and tables; Appendix
B provides the deferred proofs and the complete algorithm
description. In addition, Appendix B also describes how to
generalize MUter from successive single datapoint unlearn-
ing to successive batch of datapoints removal. Our source
code can be found in Supplementary Material.

A. Experiment Details and Deferred Experi-

ment Figures and Tables

A.1. Experiment Details

Our experiments are based on the Pytorch platform and
run on RTX 3090. For the pretraining the Wide ResNet
model on Downsampled ImageNet, we run on four GPU
devices; For all other experiments, we run on a single GPU
device.

We summarize the hyperparameters used for our adversar-
ial training/finetuning in Table 3. For Neural Network Model,
we conduct experiments on Wide ResNet 28-10 model using
the datasets Lacuna-10 and CIFAR-10. We first perform
adversarial pretraining on Lacuna-100 and Downsampled
ImageNet datasets, both by SGD with momentum for the
outer-loops. For the former, we fix the learning rate to 0.1,
and then train for 80 epochs with momentum 0.9 and weight
decay 0.0005. For the latter, we use the pretrained model
in [29] as the pretrained model here, which has a similar
training process. Then, we freeze all but the last layer to ad-
versarially finetune the model on Lacuna-10 and CIFAR-10
datasets.

We summarize the hyperparameters required by MUter
in Table 4. In the neural network model experiments, [32]
points out that under the non-convex setting, the Hessian
matrix on parameters !⇤ sometimes will not be positive
definite. We follow [32] to add a damping term � on the
diagonal with � = 0.0001.

Dataset Model Learning (Tuning) FGSM PGD
type rate Epoch epsilon epsilon alpha steps

MNIST-b Logistic 0.01 100 0.25 0.25 0.03 15
Ridge 0.01 100 0.25 0.25 0.03 15

Covtype Logistic 0.1 15 4/255 4/255 0.004 7
Ridge 0.1 15 4/255 4/255 0.004 7

Lacuna-10 Neural Network 0.01 20 8/255 8/255 2/255 10
CIFAR-10 Neural Network 0.001 10 8/255 8/255 2/255 10

Table 3: Adversarial training/finetuning parameters.

A.2. Datasets

Linear Model. We perform experiments on MNIST-b and
Covtype. MNIST-b is taken from the MNIST dataset, which
consists of 28 ⇤ 28 grayscale images from digist ‘0’ to digit
‘9’. We select the digit ‘1’ and digit ‘7’ to form the binary

Dataset Model Neumann Series Conjugate Gradient
type order k iterations C

MNIST-b Logistic 3 10
Ridge 3 10

Covtype Logistic 3 20
Ridge 20 20

Lacuna-10 Neural Network 100 10
CIFAR-10 Neural Network 100 20

Table 4: MUter parameters.

subset MNIST-b. Covtype with 54 attributes is used to clas-
sify the main tree species in the Roosevelt National Forest
wilderness area, where use the binary classification version
from LIBSVM.
Neural Network Model. We introduce Lacuna-100 and
downsampled ImageNet as core datasets, and conduct exper-
iments on target datasets Lacuna-10 and CIFAR-10. CIFAR-
10 consists of 32 ⇤ 32 color pictures, covering different an-
imals and machines in 10 categories. The Downsampled
ImageNet is derived from the 1000-class ImageNet dataset,
which resize the image to 32 ⇤ 32. Lacuna-10/Lacuna-
100 comes from [22]. We use the same data processing
method to select 10/100 celebrities (no intersection) from
VGGFace2 [7], and each celebrity randomly selects at least
500 pictures. Then each celebrity divides 100 pictures to
form the test set, and the remaining images to form the
training set. Finally, we resize the images to 32 ⇤ 32.

To facilitate the constrained adversarial perturbation for
adversarial training, all the above datasets are scaled to [0, 1]
(for image data, we use Totensor to transform, and for Cov-
type, we choose the version scaled to [0, 1] in LIBSVM.). We
summarize the dimensions, classes, and quantity information
of the above datasets in Table 5.

Dataset Domension Classes Train data Test Data

MNIST-b 784 2 11,982 1,198
Covtype 54 2 522,910 58,102
Lacuna-10 3072 10 4,374 1,000
CIFAR-10 3072 10 50,000 10,000

Table 5: Datasets Statistics

A.3. Deferred Experiment Figures and Tables

In this section, we report additional experiment results,
where Subsection A.3.1 reports additional experiment re-
sults under the PGD setting, and Subsection A.3.2 reports
additional experiment results under the FGSM setting.

A.3.1 Deferred Experiment Figures under PGD Setting

We summarize the experiment results under Ridge Model
with PGD in Figure 6.



Figure 6: Evaluation results on Ridge Regression Model
with PGD: Effectiveness (left column), Accuracy (middle
column), and Robustness (right column) on datasets MNIST
(top) and Covtype (bottom). Large plots have greater re-
moval numbers: 1%, 2%, · · · , 5%; Small plots inside the
large plots have fewer removal numbers: 1, 2, · · · , 5.

A.3.2 Deferred Experiment Figures and Tables under

FGSM Setting

In this part, we change the way of generating perturbations
from PGD to FGSM. With the same experimental settings
under PGD conditions, we report experiment results both on
Linear Model and Neural Network Model.
Results with Linear Model. We report the effectiveness,
accuracy and robustness metrics of logistic model and ridge
model in Figure 7 and Figure 8, respectively. In Table 6, we
summarize the efficiency comparison for linear model under
FGSM setting.

Figure 7: Evaluation results on Logistic Regression Model
with FGSM: Effectiveness (left column), Accuracy (middle
column), and Robustness (right column) on datasets MNIST
(top) and Covtype (bottom). Large plots have greater re-
moval numbers: 1%, 2%, · · · , 5%; Small plots inside the
large plots have fewer removal numbers: 1, 2, · · · , 5.

Model Removal MNIST-b Covtype

Type Number Fisher F-delta MUter Retrain Fisher F-delta MUter Retrain

LR

1 0.002 0.002 0.008 14.6 0.002 0.002 0.007 75
5 0.010 0.012 0.045 14.5 0.008 0.009 0.033 76
10 0.020 0.022 0.089 14.2 0.018 0.019 0.065 77
1% 0.242 0.249 0.978 14.3 9.178 11.278 33.974 77

RR

1 0.002 0.002 0.008 14.6 0.002 0.002 0.007 78
5 0.009 0.012 0.047 14.5 0.009 0.009 0.034 78
10 0.018 0.020 0.091 14.3 0.018 0.021 0.063 79
1% 0.239 0.244 0.993 14.5 9.797 11.043 33.505 79

Table 6: Efficiency results with Logistic Regression Model
(top) and Ridge Regression Model (bottom) under FGSM:
The unlearning time (in seconds) of Fisher, Fisher-delta,
MUter and Retrain under varying removal numbers: 1, 5,
10, 1% (120 for MNSIT-b, 5000 for Covtype).



Figure 8: Evaluation results on Ridge Regression Model
with FGSM: Effectiveness (left column), Accuracy (middle
column), and Robustness (right column) on datasets MNIST
(top) and Covtype (bottom). Large plots have greater re-
moval numbers: 1%, 2%, · · · , 5%; Small plots inside the
large plots have fewer removal numbers: 1, 2, · · · , 5.



Result with Neural Network Model. We report the effectiveness, accuracy, and robustness metrics of the neural network
model in Figure 9. In Table 7, we summarize the efficiency comparison for the neural network model under the FGSM setting.

Figure 9: Evaluation results on Neural Network with FGSM: Effectiveness (left column), Accuracy (middle col-
umn), and Robustness (right column) on datasets Lacuna-10 (top) and CIFAR-10 (bottom), under removal numbers
(1, 0.4%, 1%, 2%, 4%, 8%).

Removal Lacuna-10 CIFAR-10

Number Fisher F-delta MUter Retrain Fisher F-delta MUter Retrain
1 1.51 1.57 3.96 150 1.43 1.56 3.72 799
5 7.81 8.08 20.72 151 7.71 8.11 18.23 794

10 15.46 15.94 39.82 150 15.42 15.87 36.84 790

Table 7: Efficiency results with Neural Network Model under FGSM: The unlearning time (in seconds) of Fisher, Fisher-delta,
MUter and Retrain under varying removal numbers: 1, 5, 10.



B. Deferred Proofs and Algorithm Description

In this section, Subsection B.1 provides the omitted proofs for the derivation of the ATM unlearning update (i.e., Lemma
1 and Theorem 1), Subsection B.2 provides the omitted proof for the derivation of the successive unlearning setting (i.e.,
Corollary 1), Subsection B.3 provides the deferred Lemma for Schur complement for completeness and the omitted proof for
Theorem 2, Subsection B.4 provides the complete algorithm description for MUter , and Subsection B.5 how to generalize
MUter from successive single datapoint unlearning to successive batch of datapoints removal.

B.1. Proofs for Derivation of ATM Unlearning Update

B.1.1 Proof of Lemma 1

Proof. By Taylor expansion around both !⇤ and �i(!⇤), we have
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By furthering neglecting the higher-order Taylor expansion terms O(k!u � !⇤k22) and O(k�i(!u)� �i(!⇤)k22), we have the
following relationship,
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which proves Lemma 1.

B.1.2 Proof of Theorem 1

Proof. By Lemma 1, we begin with
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For the first line on the right hand side of eq.(19), we have
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where the second equality is obtained as follows. Since !⇤ is the optimum of the following ATM,

!⇤ = argmin
!
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it satisfies the following by Danskin’s Theorem,
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which is the second equality relation in eq.(20).
For the second line on the right hand side of eq.(19), we further expand (�i(!u)� �i(!⇤)) by the implicit function theorem.
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By substituting eq.(20) and eq.(24) into eq.(19), we have
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,xi + �i(!u)) ⇡ 0 according to eq.(25). As a result, we have proved that !u satisfies
the approximate unlearning criteria for ATM.



B.2. Proofs for derivation of Successive Unlearning Setting

B.2.1 Proof of Corollary 1

Proof. Denote the data that have been deleted by Ur := {i†1, i
†
2, . . . , i

†
r}. Similar to the ATM unlearning standard in eq.(3), we

have the retraining-from-scratch model parameter after the r+1-th unlearning by !⇤
�Ur[i† , which has the following definition,
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The unlearning criteria for ATM at the r + 1-th unlearning is as follows,
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Our aim is to show that !u
r+1 approximately satisfies the above criteria,
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which is also the approximate unlearning criteria for ATM in eq.(6).
The proof is similar to Theorem 1, as follows,
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where the approximation equality is by the Taylor expansion and neglecting the higher-order terms, the second equality is by
implicit function theorem and the definition of the total Hessian, and the third equality is by
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which gives
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i=1,i 6=Ur[i† r!l(!u
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r+1)) ⇡ 0. As a result, we have proved that !u satisfies the approximate
unlearning criteria for ATM in eq.(29) that is consistent with eq.(6).

B.3. Proof for Schur Complement Conversion

B.3.1 Additional Lemma of Schur Complement

Lemma 2. (Schur Complement Conversion) Let S = H11 �H12H
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22 H21. If H22 and S are invertible, then H is invertible

and the following relation holds,

H
�1 =


H11 H12

H21 H22

��1

=


S
�1 �S

�1
H12H

�1
22

�H22H21S
�1

H
�1
22 H21S

�1
H12H

�1
22

�
. (32)

B.3.2 Proof of Theorem 2
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which is the Schur complement of the following block matrix,
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which can be cast as the solution of the following linear system,
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By substituting eq.(34) in, we have
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which proves Theorem 2.



B.4. The Complete Algorithm Description

We present the complete algorithm description for MUter in Algorithm 1.

Algorithm 1 The Complete Algorithm Description for MUter
Input: Training dataset D = {(x1, y1), . . . , (xn, yn)}, loss l, adversarial perturbation constraint B(xi, r), adversarial training

finishing status {!⇤
, �1(!⇤), · · · , �n(!⇤)}, a sequence of indices to be removed U = {i†1, i

†
2, . . . , }

1: Stage I. Pre-Unlearning:

2: Compute memory M0[D!!] =
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gD!!l(!⇤

,xi + �i(!⇤)) by eq.(16);
3: Initialize M0[r!] = 0 and M0[!⇤] = !⇤;
4: for i

†
r+1 = i

†
do

5: Stage II. Unlearning:

6: Re-compute the adversarial perturbation �i†(!
⇤);

7: Compute gradient g = r!l
⇤
i† ;

8: Apply conjugate gradient (with C iterations) to solve the least square problem of the linear system
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9: Obtain Ur(!⇤
, i

†
r+1) = �!, the model paraeter after the r + 1-th unlearning: !u

r+1 = !⇤ +Ur(!⇤
, i

†
r+1);

10: Stage III. Post-Unlearning:
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12: Update the memory Mr+1[D!!] = Mr[D!!]�mi† and Mr+1[r!] = Mr[r!] + g;
13: end for

B.5. Extension to Successive Batch Unlearning

In this subsection, we show that our method can be generalized to the successive batch unlearning setting.
Successive Batch Unlearning Setting. Denote the index sets of datapoints that have already been forgotten at timestamp r by
U†
1 , · · · ,U†

r}, where each U†
r contains a set of data indices. Let the set of datapoints to be forgotten at timestamp r + 1 by

U†
r+1 = U†. Corollary 2 below extends Corollary 1 to support successive batch unlearning for ATM.

Corollary 2. Considering the successive batch unlearning setting, let the machine unlearning update at the r+1-th timestamp
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Then, the unlearning model with updated parameters !u
r+1 := !⇤ +Ur(!⇤

,U†) satisfies the approximate unlearning criteria
for the adversarial training model in eq.(6).

The proof of Corollary 2 is similar to the proof of Corollary 1. Based on Corollary 2, MUter can be similarly designed to
support the successive batch unlearning setting.


