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A. Derivation
A.1. Self-Calibration Binary Cross Entropy (SC-BCE) Loss

We show that our SC-BCE loss is close to label smoothing in binary classification. Label smoothing, as defined in Eq. (7), is a typical
data augmentation that softens the training supervision signals [46, 41, 77, 84].

S(Y, σ) = LS(Y, σ) = (1− σ)Y +
σ

K
, ∀y ∈ Y. (7)

where σ is the label smoothing strength hyperparameter and K is the number of classes, thus is set to K = 2 for a binary task. For image
label pairs X,Y ∼ P , the BCE loss with label smoothing takes the form:

LBCE(θ,X, S(Y, σ)) = Ex,y∈X,Y

[
−
(
(1− σ)y +

σ

2

)
log fθ(x)−

(
1−

(
(1− σ)y +

σ

2

))
log(1− fθ(x))

]
. (8)

On the other hand, our proposed SC-BCE loss, taking expectation over the Bernoulli variable Zt(x, y), can be written as:

EZt

[
LSC-BCE(θ,X, Y, α, β)

]
=EZt

[
(1− Zt)LBCE(X,Y ; θ) + ZtLBCE(X,P (Y, β), θ)

]
=(1− α)LBCE(X,Y ; θ) + αLBCE(X,P (Y, β), θ)

=Ex,y∈X,Y

[
−
(
(1− α)y + αp

)
log fθ(x)−

(
1− (1− α)y − αp

)
log(1− fθ(x))

] (9)

Substitute: p(Y, β) = (1− β) · y + β
2

, then we have:

Ex,y∈X,Y

[
−
(
(1− α)y + αp

)
log fθ(x)−

(
1− (1− α)y − αp

)
log(1− fθ(x))

]
=Ex,y∈X,Y

[
−
(
(1− α)y + α

(
(1− β)y +

β

2

))
log fθ(x)−

(
1−

(
(1− α)y + α

(
(1− β)y +

β

2

))
log(1− fθ(x))

]
=Ex,y∈X,Y

[
−
(
(1− αβ)y +

αβ

2

)
log fθ(x)−

(
1−

(
(1− αβ)y +

αβ

2

))
log(1− fθ(x))

]
=Lbce(θ,X, S(Y, αβ)),

(10)

where we let αβ = σ to show that the expectation of SC-BCE loss over with a stochastically perturbed label over a Bernoulli variable is
equivalent to a BCE loss with a smoothed label.

A.2. Connection between SC-BCE and Maximum Entropy Inference
We prove that the SC-BCE loss maximises prediction entropy as well as minimising cross entropy between the prediction distribution

and groundtruth distribution. Given the SC-BCE loss written as:

LSC-BCE(θ,X, Y, α, β) =(1− Zt)LBCE(θ,X, Y ) + ZtLBCE(θ,X, P (Y, β))

=(1− Zt)LBCE(θ,X, Y ) + Zt

[
(1− β

2
)LBCE(θ,X, Y ) +

β

2
LBCE(θ,X, P (Y, 2))

]

=(1− βZt)LBCE(θ,X, Y ) +
βZt

2

[
LBCE(θ,X, P (Y, 2)) + LBCE(θ,X, Y )

] (11)

where the first term includes a regular BCE loss LBCE(θ,X, Y ) with random weight 1 − βZt and P (Y, 2) represents an inverted label.
Aside from the coefficient Zβ/2, the second term can be expanded as a simpler form without label Y by collecting the Y terms:

LBCE(θ,X, P (Y, 2)) + LBCE(θ,X, Y ) =− Ex,y∈X,Y

[
(1− y) log fθ(x) + y log(1− fθ(x))

]
− Ex,y∈X,Y

[
y log fθ(x) + (1− y) log(1− fθ(x))

]
=− Ex∈X

[
log fθ(x) + log(1− fθ(x))

]
=2 · Ex∈X

[
−1

2
log fθ(X)− 1

2
log(1− fθ(X))

]
=2 · LBCE(θ,X,U)

(12)

where U is a uniform binary categorical distribution. Substituting Eq. (12) into Eq. 11 yields:

LSC-BCE(θ,X, Y, α, β) = (1− βZt) · LBCE(θ,X, Y ) + βZt · LBCE(θ,X,U) (13)



A.3. Derivation of Grad-α
We start with the SC-BCE loss with sample-wise Bernoulli variable on a finite training dataset DTR = {xi, yi}Ni=1 as:

LSC-BCE(θ,X, Y, α, β) =

N∑
i=1

(1− Zt(xi, yi)) · LBCE(θ, xi, yi) + Zt(xi, yi) · LBCE(θ, xi, p(yi, β)). (14)

where the variable is drawn from sample-specific Bernoulli distributions: Zt(xi, yi) ∼ B(1, αi), i = 1, . . . , N . Further, we take expec-
tation over the Bernoulli variable for each individual training sample to recover:

N∑
i=1

EZt(xi,yi)

[
(1− Zt(xi, yi)) · LBCE(θ, xi, yi) + Zt(xi, yi) · LBCE(θ, xi, p(yi, β))

]
=

N∑
i=1

(1− αi) · LBCE(θ, xi, yi) + αi · LBCE(θ, xi, p(yi, β)).

(15)

We further differentiate the above equation w.r.t. sample-specific label perturbation probability αi, i = 1, . . . , N to obtain:

∂
∑N

i=1(1− αi) · LBCE(θ, xi, yi) + αi · LBCE(θ, xi, p(yi, β))

∂αi
=− LBCE(θ, xi, yi) + LBCE(θ, xi, p(yi, β)),

for i = 1, . . . , N,

(16)

Performing gradient descent according to this gradient will lead to an optimal value for α with the regularization term. We find Eq. 16
(Unnormalised ∇αi ) favours perturbation methods with higher perturbation strength β, leading them to to converge faster. This is because
label perturbation techniques with higher strengths, β, by definition have lower label perturbation probabilities, α, overall to achieve optimal
model calibration degrees whereas unnormalised Grad-α agnostic to label perturbation strength. As illustrated in Fig. 5, with unnormalised
Grad-α, Hard Inversion (HI) with the largest perturbation strength β = 2 converges with only 5 epochs of ASLP training whereas it takes
Moderation (M) and Dynamic Moderation (DM) with moderate perturbation strength (β = 1) around 11 epochs to converge.
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Figure 5: Convergence speed of unnormalised (dashed line) and normalised (solid line) Grad-α with different perturbation
strengths: (1) HI: β = 2, (2) SI: β = 1.5, (3) M: β = 1, (4) DM: β = 1.

We propose a normalised version that allows ASLP under different perturbation strengths β ∈ (0, 2] to converge equally fast. The
unnormalised version (Eq. 16) is divided by β/2 and the normalised ∇αi is as:

∇αi =
2 ·
(
LBCE(θ, xi, yi) + LBCE(θ, xi, p(yi, β))

)
β

, i = 1, . . . , N (17)



Fig. 5 illustrates that ASLP with different perturbation strengths with normalised ∇αi can converge equally fast.

A.4. Confidence of the Expectation of Stochastically Perturbed Label
We define the expectation of the stochastically perturbed label as:

EZt

[
(1− Zt) · Y + Zt · P (Y, β)

]
= (1− αβ) · Y +

αβ

2
, (18)

where we require β ∈ [0, 2] and α ∈ [0, 1
β
). The resultant product is αβ ∈ [0, 1). The expected confidence of perturbed label is:

C

(
EZt

[
(1− Zt) · Y + Zt · P (Y, β)

])
=
∣∣∣(1− αβ) · Y +

αβ

2
− 0.5

∣∣∣+ 0.5

=1− αβ

2
, ∀Y = {0, 1}

(19)

A.5. Adaptive Label Smoothing (ALS)
Adaptive Label Smoothing (ASL) applies Label Smoothing with per-image label perturbation strength (α = 1 and {βi}Ni=1). Similar

to the derivation of ∇αi , we differentiate Eq. (15) w.r.t. image-specific label perturbation strength as:

∇βi =
∂
∑N

i=1(1− 1 · βi) · LBCE(θ, xi, yi) + 1 · βi · LBCE(θ, xi, p(yi, βi))

∂βi

=− LBCE(θ, xi, yi) + LBCE(θ, xi, p(yi, βi)), for i = 1, . . . , N,

(20)

The updating rule (ALSMC) that incorporates adaptive label smoothing to maximise model calibration is formulated as:

βn+1
i = βn

i + η ·
(
LBCE(θ, xi, p(yi, βi))− LBCE(θ, xi, yi)︸ ︷︷ ︸

∇βi

+λ ·min
((

1− 1 · βi

2

)
− A(θlm,DVAL), 0

)
︸ ︷︷ ︸

RegC

)

for i = 1, . . . , N,

(21)



B. Implementations
B.1. Model

Our model adopts a simple U-Net [57] structure consisting of an encoder and a decoder. Feature maps {Fi ∈ i ·C × H
i·8 × W

i·8}
4
i=1 are

extracted by the encoder, where C = 256 and i indexes from low level to high level with an increasing value.
The model outputs pixel-wise logits σ(xi) ∈ (−∞,∞)1×H×W , i = 1, . . . , N where N is the total number of samples, which is

further processed with a Sigmoid function to produce the prediction probability as:

fθ(xi) = Sigmoid(σ(xi)) =
1

1 + e−σ(xi)
, i = 1, . . . , N. (22)

The prediction probability after the Sigmoid function is in the range fθ(x) ∈ (0, 1)1×H×W . The predicted label is “foreground” (Labeled
as “1”) if the prediction probability is larger than 0.5 and is “background” (labeled as “0”) otherwise as:

ŷi = 1(fθ(xi) > 0.5), i = 1, . . . , N. (23)

The probability of predicted label ŷ, also known as the winning class, is:

Pŷi = |fθ(xi)− 0.5|+ 0.5, i = 1, . . . , N. (24)

B.2. Evaluation Metrics - Model Calibration Degree

B.2.1 Equal-Width Expected Calibration Error (ECEEW) [18]

ECEEW =

M∑
i=1

|Bi|
|D| |Ci −Ai|, (25)

where M is the total number of bins, Bi and D denote the size of the ith bin and the dataset respectively, Ci = 1
|Bi|

∑
j∈Bi

Pŷj is the
mean prediction confidence of the ith bin, and Ai =

1
|Bi|

∑
j∈Bi

1(ŷi == yi) is the mean accuracy of the ith bin. ECEEW has fixed-width

bins, with the range
[

i
M
, i+1

M

)
, i = 0, . . . ,M − 1 for the ith bin.

B.2.2 Equal-Mass Expected Calibration Error (ECEEM) [48]

ECEEW =

M∑
i=1

|Bi|
|D| · |Ci −Ai|, where |Bj | = |Bk|, ∀j, k ∈ [1,M ]. (26)

Equal-Mass Expected Calibration Error (ECEEM) is different from Equal-Width Expected Calibration Error (ECEEW) by constraining all
bins to have equal size.

B.2.3 SWEEP Expected Calibration Error (ECESWEEP) [56]

ECESWEEP = (

b∗∑
i=1

|Bi|
|D| |Ci −Ai · |p)

1
p , where b∗ = max(b|1 ≤ b ≤ n,∀b′ ≤ b∗, A1 ≤ · · · ≤ Ab′) (27)

p is a hyperparameter that is set to p = 1 and n is the largest bin number to be tested which we set to n = 100. ECESWEEP follows ECEEM

to constrain equal-size bins. ECESWEEP starts with bin number B = 1 and keeps increasing the bin number until monotony in bin accuracy
breaks.

B.2.4 DEBIAS Expected Calibration Error (ECEDEBIAS) [29]

ECEDEBIAS =

M∑
i=1

|Bi|
|D|

[
(Ci −Ai)

2 − Ai · (1−Ai)

|Bi| − 1

]
(28)

DEBIAS Expected Calibration Error (ECEDEBIAS) adopts equal-width bins.

B.2.5 Over-confidence Error (OE)

OE =
M∑
i=1

|Bi|
|D| · 1(Ci > Ai) · |Ci −Ai|, (29)

We adapt OE to different binning schemes of ECEEW, ECEEM, ECESWEEP to produce OEEW, OEEM, OESWEEP respectively.



B.3. Evaluation Metrics - Dense Classification

B.3.1 Prediction Accuracy

The model prediction accuracy is computed as:

A(θ,D) =
1

N ×H ×W

N∑
i=1

H∑
j=1

W∑
k=1

1(ŷj,k
i = yj,k

i ), (30)

where D = {xi, yi}Ni=1 denotes the dataset with N samples, H and W is the height and the width of sample respectively.

B.3.2 F-measure

F-measure is computed as:

Fξ =
(1 + ξ2)× Precision × Recall

ξ2 × Precision + Recall
, (31)

where ξ is a hyperparameter. We follow previous works [72, 37, 92, 36] to set ξ2 = 0.3. We report the maximum F-measure which selects
the best results computed with various binarising threshold.

B.3.3 E-measure

Enhanced-alignment measure (E-measure) [12] is computed as:

QFM =
1

H ×W

H∑
i=1

W∑
j=1

ϕFM (i, j), where

ϕFM = f(ξFM ) =
1

4
(1 + ξFM )2,

ξFM =
2 · φGT ◦ φFM

φGT ◦ φGT + φFM ◦ φFM
,

φI = I − µi ·A,

(32)

where I ∈ (0, 1) is a dense binary prediction map with mean value µI , A is an one matrix whose dimension matches that of I , φGT and
φFM denote groundtruth map and model prediction respectively, H and W is image height and width. Maximum E-measure replaces the
mean value with a range of binarising thresholds and report the highest result.

B.4. Datasets
DUTS-TR [63]: is commonly used training dataset for Salient Object Detection task. It consists of 10,553 pairs of image and pixel-wise
annotations. We take a subset consisting 1,000 training samples as a validation set and uses the remaining 9,553 samples for training.
DUTS-TE [63]: is a testing dataset consisting of 5,019 images. Both DUTS-TE and DUTS-TR belong to the DUTS dataset.
DUT-OMRON [80]: consists of 5,168 testing images, each of which includes at least one structurally complex foreground object(s).
PASCAL-S [34]: contains 850 testing samples that are obtained from PASCAL-VOC dataset, which is designed for semantic segmentation
task.
SOD [44]: includes 300 testing images of a wide variety of natural scenes.
ECSSD [78]: has 1,000 semantically meaningful images for testing.
HKU-IS [33]: is comprised of 4,447 testing images, each having multiple foreground objects.
Describable Texture Dataset (DTD) [9]: contains 5,640 real-world texture images. These images are grouped into 47 categories described
by adjectives such as “grooved”, “woven”, “matted”. Some texture images have a distinct region that could be considered to be salient. We
selectively choose only 500 texture images that have no obvious salient object and show some examples in Fig. 6. We consider the selected
texture images an Out-of-Distribution samples for salient object detection. The complete collection of the 500 selected texture images are
presented in Fig. 11 at the end of the Appendix.



Figure 6: Texture image samples from Describable Texture Dataset [9].



C. Model Calibration Benchmark with ECEEM, ECESWEEP and ECEDEBIAS

We present the model calibration degrees of existing SOD methods, model calibration methods and our proposed methods evaluated in
terms of: (i) Equal-Mass Expected Calibration Error ECEEM and Equal-Mass Over-confidence Error OEEM in Tab. 4, (ii) ECESWEEP and
OEEM in Tab. 5, and (iii) ECEDEBIAS in Tab. 6. Our proposed method, ASLPMC, still outperforms existing salient object detection and model
calibration methods with these model calibration evaluation metrics.

Table 4: Salient object detection model calibration degree benchmark evaluated with ECEEM (%) and OEEM (%). We set
the number of bins to B = 10. (values are shown in % and red and blue indicate the best and the second-best performance
respectively.)

Methods Year
DUTS-TE [63] DUT-OMRON [80] PASCAL-S [34] SOD [44] ECSSD [78] HKU-IS [33]

ECEEM ↓ OEEM ↓ ECEEM ↓ OEEM ↓ ECEEM ↓ OEEM ↓ ECEEM ↓ OEEM ↓ ECEEM ↓ OEEM ↓ ECEEM ↓ OEEM ↓

SOD
Methods

MSRNet [32] 2017 3.35 3.03 3.64 3.40 4.23 3.93 5.52 5.13 1.12 1.08 1.05 0.96
SRM [65] 2017 4.45 4.05 4.10 3.78 4.92 4.53 7.69 7.22 2.81 2.57 2.20 2.00
Amulet [92] 2017 5.63 5.10 5.46 4.98 5.69 5.23 8.24 7.63 2.64 2.45 2.09 1.94
BMPM [91] 2018 3.47 3.21 4.52 4.18 4.77 4.57 8.00 7.88 1.89 1.83 1.55 1.50
DGRL [67] 2018 4.42 4.04 3.87 3.57 4.91 4.57 5.69 5.35 2.23 2.07 1.69 1.53
PAGR [93] 2018 4.00 3.63 3.28 3.00 5.06 4.67 7.60 7.14 2.49 2.29 1.40 1.25
PiCANet [37] 2018 5.37 4.98 5.17 4.82 5.78 5.41 8.75 8.33 2.67 2.44 2.31 2.09
CPD [73] 2019 3.10 2.90 3.62 3.42 4.11 3.86 6.76 6.42 2.07 1.94 1.81 1.70
BASNet [55] 2019 6.07 5.85 6.15 5.96 5.72 5.48 5.07 4.88 2.12 2.04 2.36 2.28
EGNet [94] 2019 3.54 3.29 3.55 3.33 4.92 4.61 6.42 6.07 1.96 1.84 1.64 1.55
AFNet [15] 2019 3.58 3.33 3.02 2.81 4.08 3.79 6.65 6.14 2.19 2.04 1.78 1.66
PoolNet [36] 2019 3.80 3.52 3.53 3.30 5.44 5.09 6.87 6.49 2.18 2.04 1.61 1.52
GCPANet [7] 2020 4.40 4.12 4.84 4.61 4.92 4.64 4.20 3.94 1.87 1.76 1.54 1.47
MINet [51] 2020 5.02 4.76 5.40 5.13 6.17 5.86 8.29 8.01 2.84 2.67 2.31 2.17
F3Met [69] 2020 3.47 3.26 3.88 3.68 4.56 4.32 7.34 6.95 2.45 2.31 1.91 1.80
EBMGSOD [89] 2021 3.64 3.41 3.78 3.55 4.79 4.52 5.83 5.56 2.30 2.15 1.85 1.72
ICON [97] 2021 2.40 2.26 2.95 2.81 3.45 3.29 4.27 4.09 1.34 1.25 1.23 1.16
PFSNet [43] 2021 3.07 2.84 3.44 3.16 4.99 4.64 5.82 5.48 2.43 2.17 2.87 2.70
EDN [72] 2022 3.89 3.68 4.35 4.18 4.62 4.41 4.02 3.85 1.60 1.52 1.34 1.26

Model
Calibration
Methods

Brier Loss [4] 1950 2.78 2.61 3.55 3.40 3.90 3.72 6.40 6.18 1.34 1.31 1.04 1.00
TS [18] 2017 2.77 2.60 3.44 3.30 3.85 3.67 6.64 6.40 1.21 1.17 0.95 0.91
MMCE [30] 2018 2.86 2.69 3.56 3.42 4.07 3.89 6.85 6.63 1.41 1.35 1.18 1.13
LS [46] 2019 2.74 2.10 3.51 2.81 3.97 3.35 4.50 4.10 1.50 0.99 1.44 0.84
Mixup [62] 2019 3.00 2.73 3.40 3.13 2.14 0.59 4.94 4.62 1.86 0.45 4.94 0.20
Focal Loss [45] 2020 2.15 2.03 2.69 2.38 2.95 2.70 4.61 4.38 1.57 1.16 1.29 0.87
AdaFocal [17] 2022 1.74 1.50 1.96 1.45 2.45 2.02 3.88 3.09 1.79 0.74 1.45 0.44

Our
Methods

ASLPECE 2023 1.53 1.41 1.72 1.43 1.58 1.55 2.30 1.66 0.71 0.35 0.84 0.19
ASLPMEI 2023 21.00 0.08 20.24 0.00 19.89 0.00 18.14 0.00 22.15 0.00 22.58 0.00



Table 5: Salient object detection model calibration degree benchmark evaluated with ECESWEEP (%) and OESWEEP (%). The
number of bins for each evaluation is selected to ensure a monotonically increasing accuracy in the bins [56] (values are
shown in % and red and blue indicate the best and the second-best performance respectively.)

Methods Year
DUTS-TE [63] DUT-OMRON [80] PASCAL-S [34] SOD [44] ECSSD [78] HKU-IS [33]

ECESW ↓ OESW ↓ ECESW ↓ OESW ↓ ECESW ↓ OESW ↓ ECESW ↓ OESW ↓ ECESW ↓ OESW ↓ ECESW ↓ OESW ↓

SOD
Methods

MSRNet [32] 2017 3.16 2.85 4.10 3.86 4.09 3.85 5.30 5.05 1.04 1.00 1.01 0.94
SRM [65] 2017 4.66 4.32 4.92 4.61 5.77 5.43 8.04 7.56 2.98 2.74 2.12 1.95
Amulet [92] 2017 6.52 6.04 7.31 6.85 6.50 6.08 8.47 7.88 2.17 2.06 2.47 2.32
BMPM [91] 2018 4.77 4.38 4.27 3.98 6.13 5.74 8.74 8.31 2.09 1.72 2.03 1.85
DGRL [67] 2018 4.51 4.30 3.98 3.81 4.61 4.46 5.23 4.89 1.98 1.84 1.88 1.73
PAGR [93] 2018 4.40 4.07 5.20 5.26 5.71 5.44 12.07 11.45 2.80 2.62 1.58 1.50
PiCANet [37] 2018 4.81 4.52 4.17 3.86 5.34 4.91 7.71 -7.27 2.75 2.46 2.08 1.89
CPD [73] 2019 4.00 3.80 4.45 4.33 4.76 4.58 6.98 6.65 2.29 2.16 2.26 2.15
BASNet [55] 2019 7.17 6.94 7.10 6.91 7.70 7.48 7.84 7.74 2.14 2.11 2.59 2.51
EGNet [94] 2019 3.91 3.68 4.29 4.08 4.75 4.55 5.89 5.56 1.84 1.71 1.29 1.23
AFNet [15] 2019 4.31 4.06 4.48 4.27 4.56 4.49 6.79 6.24 2.21 2.06 2.06 1.95
PoolNet [36] 2019 3.58 3.36 4.30 4.10 6.09 5.75 6.72 5.75 1.98 1.85 1.53 1.45
GCPANet [7] 2020 4.45 4.18 5.26 5.04 5.01 4.75 5.74 5.60 1.63 1.52 1.58 1.51
MINet [51] 2020 4.97 4.69 6.03 5.77 6.97 6.67 8.17 7.97 1.99 1.93 1.48 1.45
F3Met [69] 2020 3.29 3.15 4.56 4.36 4.26 4.10 7.74 7.29 2.20 2.08 2.29 2.17
EBMGSOD [89] 2021 4.32 4.10 5.03 4.81 4.40 4.29 5.46 5.18 2.53 2.39 2.30 2.17
ICON [97] 2021 2.64 2.54 4.16 4.02 3.93 3.90 5.13 5.01 1.32 1.24 1.20 1.14
PFSNet [43] 2021 4.89 4.79 5.89 5.61 7.73 7.54 10.74 10.45 2.31 2.28 2.21 2.19
EDN [72] 2022 4.28 4.07 4.78 4.60 5.10 4.92 5.63 5.55 1.48 1.45 1.54 1.45

Model
Calibration
Methods

Brier Loss [4] 1950 3.43 3.17 4.39 4.15 4.44 4.22 5.03 4.22 1.48 1.38 1.21 1.15
TS [18] 2017 3.30 3.03 4.12 3.91 3.48 3.30 5.33 4.97 1.29 1.22 1.13 1.08
MMCE [30] 2018 3.44 3.20 4.38 4.17 3.66 3.48 5.55 5.19 1.40 1.31 1.36 1.29
LS [46] 2019 2.97 2.92 3.88 3.81 4.08 4.99 5.67 5.42 1.46 1.27 1.32 0.99
Mixup [62] 2019 3.01 2.76 4.47 4.21 1.84 1.26 5.26 4.99 1.28 1.11 1.73 1.48
Focal Loss [45] 2020 2.23 2.14 3.73 3.43 3.03 2.93 4.77 4.59 1.30 1.16 1.40 1.08
AdaFocal [17] 2022 1.79 1.60 2.44 2.08 1.88 1.78 4.16 3.46 1.16 0.97 1.03 0.86

Our
Methods

ASLPECE 2023 1.37 1.21 1.67 1.33 1.77 1.51 2.73 2.41 0.97 0.61 0.89 0.41
ASLPMEI 2023 20.78 0.00 19.64 0.00 19.74 0.00 17.35 0.00 22.47 0.00 22.90 0.00



Table 6: Salient object detection model calibration degree benchmark evaluated with ECEDEBIAS [29]. We set he number of
bins to B = 10. (values are shown in % and red and blue indicate the best and the second-best performance respectively.)

Methods Year
ECEDEBIAS(%) ↓

DUTS-TE [63] DUT-OMRON [80] PASCAL-S [34] SOD [44] ECSSD [78] HKU-IS [33]

SOD
Methods

MSRNet [32] 2017 0.167 0.188 0.235 0.524 0.020 0.015
SRM [65] 2017 0.419 0.358 0.436 1.221 0.186 0.110
Amulet [92] 2017 0.553 0.536 0.508 1.165 0.235 0.079
BMPM [91] 2018 0.471 0.378 0.440 1.175 0.191 0.134
DGRL [67] 2018 0.420 0.370 0.430 0.807 0.096 0.072
PAGR [93] 2018 0.340 0.418 0.470 1.568 0.137 0.053
PiCANet [37] 2018 0.456 0.359 0.461 0.985 0.175 0.124
CPD [73] 2019 0.390 0.353 0.567 1.233 0.145 0.109
BASNet [55] 2019 0.544 0.536 0.683 1.190 0.138 0.127
EGNet [94] 2019 0.318 0.304 0.576 0.860 0.109 0.066
AFNet [15] 2019 0.381 0.348 0.471 0.934 0.132 0.091
PoolNet [36] 2019 0.335 0.326 0.612 0.907 0.107 0.055
GCPANet [7] 2020 0.388 0.318 0.372 0.569 0.068 0.043
MINet [51] 2020 0.448 0.505 0.606 1.041 0.172 0.142
F3Met [69] 2020 0.457 0.468 0.556 0.816 0.193 0.167
EBMGSOD [89] 2021 0.374 0.406 0.508 0.733 0.154 0.130
ICON [97] 2021 0.306 0.390 0.382 0.607 0.098 0.101
PFSNet [43] 2021 0.323 0.339 0.539 0.594 0.588 0.435
EDN [72] 2022 0.285 0.281 0.407 0.745 0.068 0.061

Model
Calibration
Methods

Brier Loss [4] 1950 0.241 0.265 0.330 0.572 0.051 0.035
TS [18] 2017 0.230 0.246 0.338 0.631 0.040 0.024
MMCE [30] 2018 0.250 0.269 0.378 0.752 0.054 0.039
LS [46] 2019 0.218 0.241 0.303 0.570 0.047 0.034
Mixup [62] 2019 0.143 0.211 0.110 0.423 0.078 0.482
Focal Loss [45] 2020 0.135 0.193 0.262 0.518 0.070 0.061
AdaFocal [17] 2022 0.069 0.133 0.103 0.383 0.108 0.102

Our
Methods

ASLPECE 2023 0.056 0.103 0.061 0.083 0.024 0.027
ASLPMEI 2023 4.565 4.027 4.079 3.112 5.095 5.301



D. Joint Distribution of Prediction Confidence and Prediction Accuracy on 6 Testing Datasets
Fig. 7 presents the joint distribution of prediction confidence and prediction accuracy of our methods, existing model calibration methods

and some of the salient object detection models on the six SOD testing datasets.

Figure 7: Joint distribution of prediction confidence (horizontal axis) and prediction accuracy (vertical axis) on the six SOD
testing datasets.
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E. Generalisation to Existing SOD Methods
We study the compatibility of the proposed updating rule ASLPMC with some of the existing state-of-the-art SOD models, including

EBMGSOD [89], ICON [97], and EDN [72], and present the model calibration results in Tab. 7. We implement the ASLPMC with the
Hard Inversion (HI) label perturbation technique. The results demonstrate that our proposed method is readily compatible with existing
SOD methods to improve their respective model calibration degrees. Further, we find that incorporation of our proposed ASLPMC into the
training of existing SOD models do not negatively impact their classification performances as demonstrated in Tab. 8.

Table 7: The model calibration degrees of existing Salient Object Detection models with or without the proposed Adaptive
Label Augmentation are evaluated in terms of Equal-Width Expected Calibration Error, ECEEW, and Equal-Width Over-
confidence Error, OEEW, with 10 bins (B = 10).

Methods Year ASLPMC
DUTS-TE [63] DUT-OMRON [80] PASCAL-S [34] SOD [44] ECSSD [78] HKU-IS [33]
ECE ↓ OE ↓ ECE ↓ OE ↓ ECE ↓ OE ↓ ECE ↓ OE ↓ ECE ↓ OE ↓ ECE ↓ OE ↓

EBMGSOD [89] 2021 ✗ 3.45 3.29 4.11 3.95 4.79 4.61 7.48 7.30 2.14 2.05 1.79 1.70
ICON [97] 2021 ✗ 2.89 2.76 3.84 3.71 4.08 3.95 6.70 6.55 1.56 1.49 1.38 1.32
EDN [72] 2022 ✗ 3.62 3.47 4.02 3.90 4.89 4.74 8.81 8.66 2.20 2.13 1.65 1.58
EBMGSOD 2021 ✓ 1.60 1.34 1.91 1.74 2.45 2.23 5.48 5.21 0.77 0.47 0.75 0.22
ICON 2021 ✓ 1.28 1.05 1.88 1.67 2.45 2.17 5.17 4.91 1.25 0.07 1.10 0.05
EDN 2022 ✓ 2.02 1.77 2.23 2.03 2.74 2.55 6.77 6.46 0.82 0.52 0.71 0.35

Table 8: The dense classification accuracy of Salient Object Detection models with or without the proposed Adaptive Label
Augmentation is evaluated with maximum F-measure and maximum E-measure [12].

Methods Year ASLPMC
DUTS-TE [63] DUT-OMRON [80] PASCAL-S [34] SOD [44] ECSSD [78] HKU-IS [33]
Fmax ↑ Emax ↑ Fmax ↑ Emax ↑ Fmax ↑ Emax ↑ Fmax ↑ Emax ↑ Fmax ↑ Emax ↑ Fmax ↑ Emax ↑

EBMGSOD [89] 2021 ✗ 0.850 0.927 0.762 0.867 0.830 0.896 0.834 0.800 0.914 0.944 0.906 0.952
ICON [97] 2021 ✗ 0.860 0.924 0.773 0.876 0.850 0.899 0.815 0.854 0.933 0.954 0.919 0.953
EDN [72] 2022 ✗ 0.893 0.949 0.821 0.900 0.879 0.920 0.840 0.860 0.950 0.969 0.940 0.970
EBMGSOD 2021 ✓ 0.853 0.930 0.767 0.871 0.841 0.901 0.839 0.807 0.923 0.946 0.912 0.956
ICON 2021 ✓ 0.864 0.929 0.776 0.877 0.857 0.904 0.819 0.855 0.940 0.959 0.926 0.959
EDN 2022 ✓ 0.898 0.954 0.824 0.901 0.880 0.923 0.848 0.866 0.952 0.971 0.942 0.972



F. Experiments on Additional Dense Classification Tasks
F.1. Camouflaged Object Detection

We train our model on the COD10K training set [14] which consists of 6,000 training samples. We partition it into a training set of
5,400 samples and a validation set of 600 samples. Four testing datasets, including the COD10K testing set [14], NC4K [42], CAMO [31]
and CHAMELEON [59], are used to evaluate the model calibration degree and dense binary classification accuracy. We train the models
for 50 epochs and the rest of settings follow those in Salient Object Detection.

We apply the proposed ASLPMC with Hard Inversion (HI) and Soft Inversion (SI) label perturbation techniques and ALSMC to improve
the model calibration degrees with four label perturbation techniques and report the results in Tab. 9. It can be observed that both ASLP with
various label perturbation techniques and ALS can also significantly improve model calibration degrees in Camouflaged Object Detection
models. Further, we show that the improvements in model calibration degree are achieved without negatively impacting the classification
accuracy as shown in Tab. 10.

Table 9: Application Adaptive Stochastic Label Perturbation (ASLP) with different label perturbation techniques in Cam-
ouflaged Object Detection task. The model calibration degrees are evaluated with Equal-Width Expected Calibration Error
(ECEEW) and Equal-Width Over-confidence Error (OEEW) with 10 bins. Results are presented in (%).

Methods
Perturbation Params COD10K [14] NC4K [42] CHAMELEON [59] CAMO [31]
α β e ECEEW ↓ OEEW ↓ ECEEW ↓ OEEW ↓ ECEEW ↓ OEEW ↓ ECEEW ↓ OEEW ↓

Baseline (“COD-B”) 0 0 ✗ 1.65 1.55 2.75 2.60 0.63 0.57 3.62 3.46
COD-ASLPHI

MC αada 1.0 ✗ 1.06 0.81 1.67 1.51 0.43 0.12 2.00 1.80
COD-ASLPSI

MC αada 0.75 ✗ 1.05 0.80 1.72 1.55 0.44 0.21 2.03 1.85
COD-ALSMC 1.0 βada ✗ 1.03 0.76 1.69 1.53 0.45 0.28 1.98 1.81

Table 10: Application Adaptive Stochastic Label Perturbation (ASLP) with different label perturbation techniques in the
Camouflaged Object Detection task. The dense classification accuracy is evaluated with maximum F-measure and maximum
E-measure [12].

Methods
Perturbation Params COD10K [14] NC4K [42] CHAMELEON [59] CAMO [31]
α β e Fmax ↑ Emax ↑ Fmax ↑ Emax ↑ Fmax ↑ Emax ↑ Fmax ↑ Emax ↑

Baseline (“COD-B”) 0 0 ✗ 0.715 0.886 0.803 0.902 0.843 0.940 0.749 0.855
COD-ASLPHI

MC αada 1.0 ✗ 0.716 0.886 0.803 0.902 0.845 0.942 0.756 0.861
COD-ASLPSI

MC αada 0.75 ✗ 0.716 0.887 0.802 0.904 0.844 0.943 0.759 0.867
COD-ALSMC 1.0 βada ✗ 0.717 0.887 0.804 0.905 0.845 0.941 0.767 0.868

Table 11: Application Adaptive Stochastic Label Perturbation (ASLP) with different label perturbation techniques in the
Smoke Detection (SD) task. Model calibration degree is evaluated with Equal-Width Expected Calibration Error (ECEEW)
and Equal-Width Over-confidence Error (OEEW) with 10 bins. Dense classification accuracy is evaluated with maximum
F-measure and maximum E-measure [12].

Methods
Perturbation Params SMOKE5K [14]
α β e ECEEW(%) ↓ OEEW(%) ↓ Fmax ↑ Emax ↑

Baseline (“SD-B”) 0 0 ✗ 0.164 0.154 0.763 0.930
SD-ASLPHI

MC αada 1.0 ✗ 0.071 0.063 0.763 0.930
SD-ASLPSI

MC αada 0.75 ✗ 0.076 0.072 0.765 0.932
SD-ALSMC 1.0 βada ✗ 0.079 0.072 0.764 0.930

F.2. Smoke Detection
We train our model on the SMOKE5K training set [79] which consists of 4,600 training samples of real smoke. We partition it into a

training set of 4,200 samples and a validation set of 400 samples. SMOKE5K testing set, comprising of 400 real-smoke images, is used to
evaluate model calibration degree and dense binary classification accuracy.

We apply the proposed ASLPMC with Hard Inversion (HI) and Soft Inversion (SI) label perturbation techniques and ALSMC to improve
the model calibration degrees and report the results in Tab. 11. It can be observed that both ASLPMC with different label perturbation



techniques and ALSMC can significantly improve model calibration degrees in Smoke Detection models, despite the baseline model already
achieving higher calibration degrees compared with baseline models in Salient Object Detection and Camouflaged Object Detection.
We can observe that our proposed methods still achieve improvements in model calibration degree without negatively impacting the
classification accuracy.

G. Experiments on Additional Dense Multi-Class Classification Task - Semantic Segmentation
We evaluate our proposed methods on the PASCAL VOC 2012 segmentation dataset [11] which has 20 foreground categories and 1

background category. The official split has 1,464, 1,449, and 1,456 samples in training, validation and testing sets respectively. Following
previous work [5], we use an augmented training set comprising of 10,582 samples, provided by [19], for model training. As we do not
have access to the groundtruth of “official testing set” whose evaluation is server-based, we adopt the “official validation set” as “our testing
set” to evaluate the model calibration degrees and segmentation accuracies. Similar to our implementation in dense binary classification
tasks, we partition the augmented training set into “our training set” of 9,582 images and “our validation set” of 1,000 images.

We adopt DeepLabv3+ [5] with a ResNet50 backbone as our baseline model (“SS-B”) and apply the proposed ASLPMC with with the
Hard Inversion (HI) label perturbation technique and ALSMC to improve the model calibration degrees. We report model calibration results
evaluated in terms of Equal-Width Expected Calibration Error (ECEEW) and Equal-Width Over-confidence Error (OEEW) with 10 bins in
Tab. 12.

Table 12: Application Adaptive Stochastic Label Perturbation (ASLP) with different label perturbation techniques in a Se-
mantic Segmentation (SS) task. Model calibration degree is evaluated with Equal-Width Expected Calibration Error (ECEEW)
and Equal-Width Over-confidence Error (OEEW) with 10 bins. Segmentation accuracy is evaluated with Intersection-over-
Union (IoU) [5].

Methods
Perturbation Params PASCAL VOC 2012 [11]
α β e ECEEW(%) ↓ OEEW(%) ↓ IoU (%) ↑

Baseline (“SS-B”) 0 0 ✗ 6.29 5.37 71.2
SS-ASLPHI

MC αada 1.0 ✗ 4.05 3.13 71.3
SS-ALSMC 1.0 βada ✗ 4.10 3.24 71.5



H. Static Stochastic Label Perturbation
H.1. Implementation

We implement four static stochastic label perturbation techniques each of which have a single label perturbation probability α for the
entire training dataset. Their details are as below:

• Hard Inversion (HI) produces the perturbed label by inverting the groundtruth label with p = LP(y, 2) = 1 − y. Intuitively, it
switches the label category from “salient” to “non-salient” and vice versa. The label perturbation probability is limited to α ∈ [0, 0.5)
to avoid learning a complete opposite task (non-salient background detection).

• Soft Inversion (SI) inverts the label category and softens the target with p = LP(y, 0.75) = −0.5y + 0.75. Similarly, the label
perturbation probability is limited to p ∈ [0, 1

1.5
) to prevent from learning a complete opposite task.

• Moderation (M) transforms groundtruth label into a prior distribution on the two classes (salient foreground object v.s. non-salient
background), as p = LP(y, 0.5) = 0.5. The label perturbation probability is in the range α ∈ [0, 1).

• Dynamic Moderation (DM) introduces additional stochasticity on top of the Moderation method by adding an additional noise
sampled from a truncated normal distribution2: p = LP(y, 0.5) + e = 0.5 + e, e ∼ N−0.5,0.5(0, 1). The label perturbation
probability is in the range α ∈ [0, 1).

H.2. Effect of Static Stochastic Label Perturbation Techniques on Model Calibration Degrees
Fig. 8 presents model calibration degrees, evaluated in terms of Equal-Width Expected Calibration Error (ECEEW) and Equal-Width

Over-confidence Error (OEEW) with 100 bins (B = 100), of various static stochastic label perturbation techniques, in which a unique
label perturbation probability α is set for all samples throughout the training. We can observe that, with an increasing label perturbation
probability, ECE scores tend to reduce to a critical points before climbing. This is caused by the model transitioning from being over-
confident to under-confident. This is evidenced in the OE scores which keep decreasing until 0 when the label perturbation probability
increases. Further, “HI” has the steepest change in terms of both ECE and OE scores. This rate can be related to the product of label
perturbation probability and strength αβ. We also find a dampening effect of additional stochasticity at high label perturbation probability
range (α ∈ [0.4, 0.6]) where “DM” is consistently less under-confident than “M”.

Table 13: Effect label perturbation probability range (%) for different static stochastic label perturbation techniques to reduce
the Equal-Width Expected Calibration Error (ECEEW) scores on the six testing datasets.

Static SLP Technique DUTS-TE [63] DUT-OMRON [80] PASCAL-S [34] SOD [44] ECSSD [78] HKU-IS [33]

Hard Inversion (HI) 0 - 5% 0 - 3% 0 - 5% 0 - 10% 0 - 1% 0 - 1%
Soft Inversion (SI) 0 - 5% 0 - 5% 0 - 5% 0 - 10% 0 - 2% 0 - 2%
Moderation (M) 0 - 5% 0 - 5% 0 - 5% 0 - 20% 0 - 3% 0 - 3%
Dynamic Moderation (DM) 0 - 5% 0 - 5% 0 - 5% 0 - 20% 0 - 3% 0 - 3%

The effective label perturbation probability range for each static SLP technique on the six testing datasets is summarised in Tab. 13.
In general, the static SLPs have a wide range of effective label perturbation probability leading to reduced ECE scores compared to the
baseline. The widest effective label perturbation probability range is found on the SOD dataset, with 0 - 10% for “HI” and “SI” and 0 -
20% for “M” and “DM”. This can be attributed to the baseline model being the most mis-calibrated on the SOD dataset, thus stronger label
augmentation measures are required to transform the model from being over-confident to being under-confident. On the other hand, the
baseline model is the most calibrated on the ECSSD and the HKU-IS datasets, indicating a small gap between the prediction confidence
and prediction accuracy distributions. That leaves little space for label augmentation techniques to reduce the prediction confidence in
order to match the prediction accuracy.

H.3. Effect of Static Stochastic Label Perturbation Techniques on Dense Binary Classification Performance
We present the dense binary classification performance, evaluated in terms of maximum F measure, of various static stochastic label

perturbation techniques in Fig. 9. It can be observed that in the effective label perturbation probability range for respective static SLP
techniques, the dense binary classification performances are not negatively impacted. The performance drop is observed when the product
αβ is too high, e.g. α ∈ [0.2, 0.3] for “HI”, α = 0.4 for “SI”, and α = 0.6 for “DM”. Overall, incorporation of static SLP techniques,
with an effective label perturbation probability, can achieve improved model calibration degrees without sacrificing the dense bianry
classification performance.

2Truncated normal distribution Na,b(µ, σ), where a and b indicate the bound, µ is the mean and σ is the variance.
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Figure 8: Model calibration degrees, evaluated in terms of Equal-Width Expected Calibration Error (ECEEW) and Equal-
Width Over-confidence Error (OEEW) with 100 bins (B = 100), of various static stochastic label perturbation techniques
under different label perturbation probabilities on the six testing datasets: (a): DUTS-TE, (b) DUT-OMRON, (c) PASCAL-S,
(d) SOD, (e) ECSSD, (f) HKU-IS.
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Figure 8: Model calibration degrees, evaluated in terms of Equal-Width Expected Calibration Error (ECEEW) and Equal-
Width Over-confidence Error (OEEW) with 100 bins (B = 100), of various static stochastic label perturbation techniques
under different label perturbation probabilities on the six testing datasets: (a): DUTS-TE, (b) DUT-OMRON, (c) PASCAL-S,
(d) SOD, (e) ECSSD, (f) HKU-IS.
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Figure 9: Dense binary classification performance, evaluated in terms of maximum F measure, of various static stochastic
label perturbation techniques under different label perturbation probabilities on the six testing datasets: (a): DUTS-TE, (b)
DUT-OMRON, (c) PASCAL-S, (d) SOD, (e) ECSSD, (f) HKU-IS.



I. Experiments on Salient Object Detection with Additional Backbones
Experiments with additional backbones, VGG16 and Swin Transformer, are carried out on Salient Object Detection. We replace the

ResNet50 backbone of the baseline model with VGG16 and Swin Transformer in respective experiments. We apply the proposed ASLPMC

with with Hard Inversion (HI) and Soft Inversion (SI) label perturbation techniques and ALSMC to improve the model calibration degrees
with respective backbones.

Table 14: Model calibration degrees with Swin transformer [39] backbone. Results are evaluated with Equal-Width Expected
Calibration Error (ECEEW) and Equal-Width Over-confidence Error (OEEW) with 10 bins (units in (%)).

Methods
Perturbation Params DUTS-TE [63] DUT-OMRON [80] PASCAL-S [34] SOD [44] ECSSD [78] HKU-IS [33]
α β e ECE ↓ OE ↓ ECE ↓ OE ↓ ECE ↓ OE ↓ ECE ↓ OE ↓ ECE ↓ OE ↓ ECE ↓ OE ↓

Baseline (“Swin-B”) 0 0 0 2.41 2.23 3.29 3.15 3.35 3.19 6.23 6.05 1.02 0.97 0.87 0.82
Swin-ASLPHI

MC αada 1.0 ✗ 1.44 1.21 1.73 1.59 1.74 1.57 5.08 4.85 0.57 0.30 0.81 0.23
Swin-ASLPSI

MC αada 0.75 ✗ 1.48 1.14 1.63 1.49 1.80 1.52 5.14 4.93 0.64 0.38 0.80 0.24
Swin-ALS 1.0 βada ✗ 1.44 1.14 1.76 1.57 1.69 1.55 5.17 4.82 0.54 0.36 0.77 0.24

Table 15: Dense classification accuracy with Swin transformer [39] backbone. Results are evaluated with maximum F-
measure and maximum E-measure [12].

Methods
Perturbation Params DUTS-TE [63] DUT-OMRON [80] PASCAL-S [34] SOD [44] ECSSD [78] HKU-IS [33]
α β e Fmax ↑ Emax ↑ Fmax ↑ Emax ↑ Fmax ↑ Emax ↑ Fmax ↑ Emax ↑ Fmax ↑ Emax ↑ Fmax ↑ Emax ↑

Baseline (“Swin-B”) 0 0 0 0.894 0.949 0.804 0.890 0.877 0.920 0.858 0.878 0.948 0.969 0.939 0.969
Swin-ASLPHI

MC αada 1.0 ✗ 0.895 0.953 0.808 0.892 0.881 0.924 0.959 0.879 0.950 0.969 0.938 0.969
Swin-ASLPSI

MC αada 0.75 ✗ 0.895 0.952 0.805 0.893 9,880 0.922 0.857 0.882 0.950 0.969 0.939 0.970
Swin-ALS 1.0 βada ✗ 0.895 0.952 0.804 0.892 0.879 0.920 0.859 0.879 0.948 0.969 0.939 0.970

Table 16: Model calibration degrees with VGG16 [58] backbone. Results are evaluated with Equal-Width Expected Calibra-
tion Error (ECEEW) and Equal-Width Over-confidence Error (OEEW) with 10 bins (units in (%)).

Methods
Perturbation Params DUTS-TE [63] DUT-OMRON [80] PASCAL-S [34] SOD [44] ECSSD [78] HKU-IS [33]
α β e ECE ↓ OE ↓ ECE ↓ OE ↓ ECE ↓ OE ↓ ECE ↓ OE ↓ ECE ↓ OE ↓ ECE ↓ OE ↓

Baseline (“VGG-B”) 0 0 0 3.46 3.23 4.12 3.92 4.40 4.17 7.87 7.60 2.02 1.91 1.51 1.44
VGG-ASLPHI

MC αada 1.0 ✗ 1.44 1.28 1.91 1.82 2.40 2.16 5.44 5.08 0.57 0.21 0.84 0.16
VGG-ASLPSI

MC αada 0.75 ✗ 1.47 1.23 2.05 1.81 2.34 2.15 5.54 5.22 0.51 0.21 0.88 0.19
VGG-ALS 1.0 βada ✗ 1.48 1.31 1.99 1.76 2.33 2.04 5.53 5.14 0.45 0.29 0.82 0.13

Table 17: Dense classification accuracy with VGG16 [58] backbone. Results are evaluated with maximum F-measure and
maximum E-measure [12].

Methods
Perturbation Params DUTS-TE [63] DUT-OMRON [80] PASCAL-S [34] SOD [44] ECSSD [78] HKU-IS [33]
α β e Fmax ↑ Emax ↑ Fmax ↑ Emax ↑ Fmax ↑ Emax ↑ Fmax ↑ Emax ↑ Fmax ↑ Emax ↑ Fmax ↑ Emax ↑

Baseline (“VGG-B”) 0 0 0 0.838 0.912 0.741 0.851 0.844 0.895 0.810 0.851 0.921 0.944 0.913 0.950
VGG-ASLPHI

MC αada 1.0 ✗ 0.844 0.916 0.746 0.857 0.844 0.896 0.812 0.851 0.921 0.944 0.913 0.951
VGG-ASLPSI

MC αada 0.75 ✗ 0.845 0.916 0.747 0.855 0.846 0.895 0.810 0.851 0.921 0.944 0.916 0.953
VGG-ALS 1.0 βada ✗ 0.843 0.914 0.745 0.857 0.848 0.898 0.811 0.852 0.921 0.945 0.913 0.952



J. Hyperparameters

(a) Learning Rate (η) (b) Regularisation Strength (λ)

Figure 10: Ablation study on hyperparameters: (1) learning rate (η) and (2) regularisation strength (λ) evaluated in terms of
ECEEW and OEEW with 100 bins on the DUTS-TE dataset.

K. Training and Inference Time
In SOD, the training of ASLP on DUTS-TR requires 2.5 hours, which is 0.2 hours longer (or ∼ 8.7% more) than training the base

model (2.3 hours). The inference speed of ASLP on the six SOD testing datasets averages: 53.40 samples per second, which is the same as
that of the base model because of the same network architecture. Both training and inference time are evaluated on a single Geforce RTX
3090 GPU.



L. 500 Texture Images from Describable Texture Dataset

Figure 11: Texture images without visually salient objects selected from Describable Texture Dataset [9].
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