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Overview
In this supplementary material, we provide more details

on the following aspects that are not presented in the main
paper due to space limit:

• Results on the KITTI Validation Set are provided in
Sec. A.1.

• Supplementary ablation studies are provided in
Sec. A.2.

• Results and analysis on other category are provided in
Sec. A.3.

• Qualitative failure case study on the KITTI Validation
Set are provided in Sec. B.

• Qualitative failure case study on the Waymo Validation
Set are provided in Sec. C.

• Implementation details are provided in Sec. D.

• Details of KITTI validation results using 5 random
seeds are provided in Sec. E.

A. Supplementary Results
A.1. Results on the KITTI Validation Set

Comparison with SOTA Methods. We report quantitative
results of car category on the KITTI validation set as shown
in Tab. 1. It shows that our MonoXiver obtains significant
improvements with different backbone detectors including
SMOKE [11] and MonoCon [3].
Median/Average Results on KITTI Validation Set.
KITTI dataset is known to exist performance fluctuations on
its validation set. Therefore, we report median and average
results across 5 different runs to avoid randomness follow-
ing [7]’s settings. The result is shown in Tab. 2. We observe
consistent improvement under various evaluation metrics.
The details of 5 different runs are provided in E.
AP3D at Different Depth Ranges on KITTI Validation
Set. We report results in Tab. 3. Our MonoXiver consis-
tently improves baseline at different depth ranges.

Methods Extra AP3D|R40 APBEV |R40

Easy Mod. Hard Easy Mod. Hard

Kinematic3D [2] Temporal 19.76 14.10 10.47 27.83 19.72 15.10

DFM [16] Temporal & Lidar 29.27 20.22 17.46 38.60 27.13 24.05

DID-M3D [13]

Lidar

22.98 16.12 14.03 31.10 22.76 19.50
CaDDN [14] 23.57 16.31 13.84 - - -
MonoJSG [9] 26.40 18.30 15.40 - - -
MonoDistill [4] 24.31 18.47 15.76 33.09 25.40 22.16
MonoDTR [6] 24.52 18.57 15.51 33.33 25.35 21.68

MonoFlex [17]

None

23.64 17.51 14.83 - - -
GUPNet [12] 22.76 16.46 13.72 31.07 22.94 19.75
DEVIANT [7] 24.63 16.54 14.52 32.60 23.04 19.99
Homography [5] 23.04 16.89 14.90 31.04 22.99 19.84

SMOKE [11]

None

10.43 7.09 5.57 17.62 12.02 10.07
Ours + SMOKE 11.58 9.40 7.75 18.07 14.47 12.01
MonoCon [10] 26.33 19.01 15.98 34.65 25.39 21.93
Ours + MonoCon 30.48 22.40 19.13 38.77 28.67 24.89

Table 1: Quantitative performance of the Car category on
the KITTI validation set. Method are ranked by moder-
ate settings based on 3D detection performance following
KITTI leaderboard within each group. We highlight the best
results in bold and the second place in underline.

Methods IoU3D ≥ 0.7 IoU3D ≥ 0.5
Easy Mod. Hard Easy Mod. Hard

MonoCon (MonoCon paper) 26.33 19.01 15.98 64.53 47.35 42.49
+ MonoXiver (our main paper) 30.48 (+4.15) 22.40 (+3.39) 19.13 (+3.15) 65.37 (+0.84) 47.12 (-0.23) 41.33 (-1.16)

MonoCon (reproduced, Med.) 25.99 18.98 16.13 65.36 48.33 43.63
+ MonoXiver (Med.) 29.67 (+3.68) 22.40 (3.42) 19.41 (+3.28) 67.00 (+1.64) 50.40 (+2.07) 45.00 (+1.37)

MonoCon (reproduced, Ave.) 25.86 18.92 16.00 64.15 47.49 42.56
+ MonoXiver (Ave.) 29.48 (+3.62) 22.44 (+3.52) 19.49 (+3.49) 66.46 (+2.31) 49.60 (+2.11) 44.12 (+1.56)

Table 2: Median/Average Car category AP3D results on the
KITTI validation set.

Methods Easy, IoU3D ≥ 0.7 Moderate, IoU3D ≥ 0.7 Hard, IoU3D ≥ 0.7
0−15 15−30 30−45 0−15 15−30 30−45 0−15 15−30 30−45

MonoCon (MonoCon paper) 42.18 7.69 - 43.80 9.01 0.50 36.73 7.97 0.54
MonoXiver (our main paper) 42.30 10.49 - 45.47 11.28 1.04 37.92 11.03 0.96

Table 3: Car category AP3D result at different depth ranges
on the KITTI validation set.

Extra Experiments for the Effectiveness of the Perciver
We run four more experiments to confirm the effectiveness
of the Perciver and the results are shown in Tab. 4.

A.2. Supplementary Ablation Studies

Choice of Top-down Generated Proposal Anchors. We
report the result of generating a different number of top-



With Perciver IoU3D ≥ 0.7
Easy Mod. Hard

- (our main paper) 29.33 21.67 18.46
✓(our main paper) 30.48 (+1.15) 22.40 (+0.73) 19.13 (+0.67)
- (Med.) 28.47 21.71 18.80
✓(Med.) 29.67 (+1.20) 22.40 (+0.69) 19.41 (+0.61)
- (Ave.) 28.55 21.70 18.80
✓(Ave.) 29.48 (+0.93) 22.44 (+0.74) 19.49 (+0.69)

Table 4: Median/Average Car category AP3D results on the
KITTI validation set.

down proposals in Tab. 5. When we reduce the number of
proposals or the range of generated proposals (Tab. 5 b. v.s.
Tab. 5 c. and Tab. 5 d.), the performance will drop a lot.
This is because the detection performance is dependent on
the quality of anchors (recall rate), which aligns with our
empirical upper-bound analysis presented in Sec. 3 of the
main paper well. When we increase the number of the top-
down proposals (Tab. 5 a.), the performance also drops. The
reason might be that the densely generated proposals will
heavily overlap with each other in 2D feature maps (as dis-
cussed in the introduction of our main paper). This will
make the model confused, and lead to the difficulty of opti-
mization during training.

Range Stride #Bboxes Easy/Mod./Hard

MonoCon [10] - - - 26.33/19.01/15.98
a. 1.5 0.5 49 29.34/21.18/17.82
b. 1.5 0.75 25 30.48/22.40/19.13
c. 1.5 1.5 9 27.32/19.72/16.67
d. 1.0 0.5 25 28.80/20.97/17.61

Table 5: Ablation studies on the top-down proposal genera-
tion. Setting b. is used in our main experiments in the main
paper.

Cls 2D Box 3D Box Easy/Mod./Hard

MonoCon [10] - - - 26.33/19.01/15.98
a. ✓ ✓ - 22.54/15.73/12.99
b. ✓ - ✓ 30.09/22.08/18.92
c. ✓ ✓ ✓ 30.48/22.40/19.13
d. - - - 10.18/8.41/7.23

Table 6: Ablation studies on the bounding box assigner. The
setting c. is used in our main experiments in the main paper.

Design of Ground Truth Assignment. We use set-
prediction formulation during training. The bipartite match-
ing consists of four costs: 1) classification cost, 2) 2D
bounding box L1 cost, 3) 2D IoU cost, 4) 3D IoU cost. We
report detailed ablations in Tab. 6. Tab. 6 a. shows that the
performance will drop a lot if we only use the 2D bounding
boxes for assignment. This implies that the quality of the

2D box cannot ensure the prediction quality in 3D. Tab. 6
b. shows that only using the 3D box as an assignment basis
will also lead to a performance drop compared with Tab. 6
c. This is because there are many cases in which predicted
bottom-up proposals have no overlap with ground truth in
3D space. In these cases, the 2D box terms will serve as
an auxiliary criterion during training to help the model se-
lect highly related 2D regions in the feature map to pre-
dict 3D boxes. We also try to use max IoU-based assign-
ment criterion following Faster-RCNN [15], whose result
is shown in Tab. 6 d. It shows that the performance will
drop by a large margin compared with Tab. 6 c., which is
because our proposed denoising process requires deleting
over-generated bounding boxes in 3D. The max-IoU based
assignment treats all qualified proposals as positive. There-
fore the predicted score of max-IoU based models cannot
be used as removing unnecessary boxes.

Method GrooMeD-NMS APIoU≥0.7

NMS Assignment Easy Mod. Hard

MonoCon (reproduced, Ave.) - - 25.86 18.92 16.00
+ MonoXiver (Ave.) - - 29.48 22.44 19.49

I. (Ave.) - ✓ 28.13 21.00 17.78
II. (Ave.) ✓ ✓ 28.29 21.25 17.85
III. (Ave.) - gIoU3D 29.06 22.56 19.77

Table 7: Ablation studies by adopting Groomed-NMS’s de-
sign [8].

Study of GrooMeD-NMS [8]. Groomed-NMS introduces
a novel differentiable NMS approach to achieve fully end-
to-end monocular 3D object detection, aiming to fulfill a
similar objective to ours – eliminating redundant boxes.
A key differentiator in their method involves utilizing the
product of IoU2D and gIoU3D as metrics for NMS and
ground truth assignment, in contrast to our employment
of Hungarian assignment metrics. Our investigation into
substituting our denoising module/ground truth assignment
with Groomed-NMS is detailed in Table 7. Additionally,
we replaced IoU3D with gIoU3D for our Hungarian as-
signment in the final set of experiments. The results indi-
cate that our Hungarian assignment approach outperforms
Groomed-NMS. One possible explanation is the adoption
of the image-wise AP loss in their work, which might have
complementary effect for their NMS design. Furthermore,
our findings demonstrate a marginal performance enhance-
ment when replacing IoU3D with gIoU3D in the ground
truth assignment. We extend our gratitude to an anonymous
ICCV’23 reviewer for bringing this to our attention.
Study of Different Intra-Proposal Attention in MonoX-
iver Structure. In the main paper, we first fuse the
projection-point appearance encoding fpt9×N×d and the ge-
ometric encoding fgeog×N×d, and then we decode the RoI
appearance encoding froi1×N×d with the 9-token geometry-



aware projection-point encoding in another cross-attention
module. For convenience, we denote the first fusion stage
as the encoder stage and the second stage as the decoder
stage. We report more study results on fusion structures by
changing query inputs at the encoder and decoder stages.
The result is shown in Tab. 8. The result shows that us-
ing the appearance feature as decoder query input achieves
better performance for easy and moderate instances. The
reason might be that using queries as input will keep more
RoI information in the cross-attention calculation process.

Appearance Geometry Easy/Mod./Hard

a. Decoder Q Encoder K,V 30.48/22.40/19.13
b. Decoder Q Encoder Q 30.00/22.07/18.78
c. Encoder Q Decoder Q 29.33/21.87/19.02
d. Encoder K,V Decoder Q 29.42/22.03/19.18

Table 8: Ablation studies on different MonoXiver struc-
tures. The setting a. is used in our main experiments in
the main paper.

A.3. Detection Performance on Other Categories

KITTI has limited samples of other categories (pedestri-
ans and cyclists). Their performance is empirically unsta-
ble, which is reported in [12, 16]. Therefore, in the main
paper, we mainly focus on the detection performance of car
category. Here, we also discuss related empirical upper-
bound analysis and experiment results in Tab. 9 and Tab. 10
for reference.

Range Stride Val, APR40, Ped. Val, APR40, Cyc.
Easy Moderate Hard Easy Moderate Hard

MonoCon [10] 1.46 1.31 0.99 7.60 4.35 3.55

± 1.5 0.2 33.75 ↑32.29 27.06 ↑25.75 23.09 ↑22.10 39.09 ↑31.49 21.70 ↑17.35 20.20 ↑16.65
± 1.5 0.3 21.61 ↑20.15 17.59 ↑16.28 14.46 ↑13.47 34.02 ↑26.42 19.00 ↑14.65 17.48 ↑13.93
± 1.5 0.5 6.56 ↑5.10 6.07 ↑4.76 4.75 ↑3.76 21.31 ↑13.71 12.12 ↑7.77 10.92 ↑7.37
± 1.5 0.75 4.85 ↑3.39 3.72 ↑2.41 3.11 ↑2.12 12.81 ↑5.21 6.99 ↑2.64 6.31 ↑2.76

Table 9: The empirical upper bounds of performance in Pedes-
trian and Cyclist on KITTI validation set based on the bottom-up
anchor proposals computed by the MonoCon [10].

Empirical Upperbound Analysis. As shown in Table 1
of the main paper, the empirical performance upper bound
is subject to the search range and stride. Table 9 shows
the empirical upper bound for Pedestrians and Cyclists on
the KITTI dataset. It shows that if we use a large stride
and range the same as the setting used in the car category,
the improvement potential is relatively small. If we use a
small stride and large range, the potential improvement can
be also very high.
Experiment Results. We report the detection performance
on the Pedestrian and Cyclist category in Tab. 10. It shows
that the MonoXiver is able to improve the detection perfor-
mance on the Pedestrian category by a large margin. It has

little improvement in the Cyclist category. The possible rea-
son might be that the Cyclist category does not have enough
data for MonoXiver to learn denoising over-generated Cy-
clist bounding boxes.

Range Stride Val, APR40, Ped. Val, APR40, Cyc.
Easy Moderate Hard Easy Moderate Hard

MonoCon [10] 1.46 1.31 0.99 7.60 4.35 3.55

± 1.5 0.5 5.59 4.57 3.64 6.48 3.45 2.99
± 1.5 0.75 7.95 5.49 4.62 8.04 4.42 3.91
± 1.5 1.5 3.57 2.79 1.90 7.60 3.87 3.35

Table 10: The detection performance on Pedestrian and Cyclist
on KITTI validation set.

Figure 1: Qualitative results our MonoXiver with Mono-
Con [10] on KITTI validation set [3]. The ground truth is
shown in green and blue. The prediction result is shown in
red. We use top-1 prediction results for visualization.

B. Failure Case Study on KITTI
In Figure 1, we present an analysis of failure cases using

the baseline method MonoCon [10]. The results indicate
that MonoXiver faces challenges in accurately classifying
top-down proposals for instances that are located far away
from the camera or that are directly in front of the camera.
As we have discussed in the introduction of our main pa-
per, these instances are considered to be extremely difficult
negatives due to their high overlap with the ground truth,
which in turn, presents an inherent challenge of depth am-
biguity in monocular 3D object detection. We believe that
incorporating temporal cues in our approach could be an ef-
fective solution to address this challenge, which we intend
to explore in future work.

C. Failure Case Study on Waymo
In Figure 2, we present an analysis of failure cases using

the baseline method GUPNet [12]. The results indicate that



Figure 2: Qualitative results our MonoXiver with GUP-
Net [12] on Waymo validation set [3]. The ground truth
is shown in green. The prediction result is shown in pink.
We use top-1 prediction results for visualization.

MonoXiver faces challenges in accurately classifying top-
down proposals for instances that are highly occluded, trun-
cated and that are located far from the camera. We believe
that enhancing semantic cues (e.g. using spatial attention
modules, larger/more powerful pretrained feature extraction
backbone networks, etc.) will help resolve the occlusion
and truncation issues.

D. Detailed Network Architecture
Embedding MLP. We use MLP to encode geometric fea-
tures, projection point features, and RoI features. The struc-
ture is a stack of FC + LN [1] + ReLU blocks. We use one
block to keep the structure simple. We use C = 256 for
embedding dimensions.
Multi-head Attention layer. We use PyTorch built-in
multi-head attention for implementing intra-proposal atten-
tion and inter-proposal attention. We use 8 heads for di-
viding the channels. We use 2 layers of MLP (with resid-
ual connection) for projecting the attended queries. We use
GELU as activate function in the MLP layer.
Refinement Head. We append two blocks of stacked MLP
(FC + LN + ReLU) to the encoded queries for predicting
classification scores, 3D location residuals, and 3D dimen-
sion residuals separately. We use a linear layer for predic-
tion after the two stacked MLPs.

E. Detailed Results of different runs
The detailed results of different runs is shown in Tab. 11.
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