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In this supplement to the main paper, we provide imple-
mentation details (Appendix A) and additional quantitative
and qualitative results (Appendix B).

A. Implementation Details
A.1. PARIS Network Architecture

Our part-level implicit representations are implemented
using Instant-NGP [7] and NerfAcc [3] to enhance the
approximation quality of NeRF [5] while minimizing the
training time for each scene. Recall that we represent static
and movable parts in separate neural fields. The static field
and mobile field share the same network architecture. For
each field F(x,d), we leverage the multi-resolution hash
encoding proposed by Instant-NGP to encode the point po-
sition x into a 16-dimensional feature, while the viewing
direction d is encoded with spherical harmonics of order 4.
We configure the hash grid to be in 16 levels with 219 as
the maximum entries per level (hash table size), and other
hyper-parameters are using the default configurations rec-
ommended in the original paper [7]. Following the encod-
ing layer, a two-layer fully-fused MLP of the tiny-cuda-
nn framework [6] is integrated into the geometry network,
while a one-layer fully-fused MLP is integrated into the tex-
ture network. All the activation functions used are ReLU.
To further speed up the ray marching and volumetric ren-
dering, we leverage NerfAcc to parallelize the procedure.

A.2. Training Details

All the results reported in our paper are trained within
300,000 iterations. This takes less than 30 minutes of train-
ing on a single NVIDIA GeForce RTX 3060. We optimize
the motion parameters and neural radiance fields with two
separate Adam [2] optimizers. We set the learning rate for
the field optimizer at 0.002. For motion parameters, we set
the learning rate at 0.01 for revolute joints and 0.005 for
prismatic joints. Empirically, we observe a two-stage op-
timizing pattern during training. Within the first 5,000 it-
erations, the motion parameters converge to a point very
close to ground truth while low-frequency details of the
fields are jointly learned. As the motion stabilized, the high-

frequency details of the fields are refined during later itera-
tions. For this feature, we set different MultiStepLR sched-
ulers for the two optimizers, where the learning rate for mo-
tion drops around 4 times faster after 5,000 iterations.

B. Additional Results and Analysis
B.1. More Results on Synthetic Data

Part segmentation and motion prediction. Figure 1
shows additional qualitative visualizations for the results re-
ported in the paper. All these four examples are categories
that were not used to train Ditto [1]. Ditto can separate rea-
sonable part geometry for Washer and Fridge. However,
as we demonstrated, the performance of Ditto significantly
drops on unseen categories, especially for motion predic-
tion. In contrast, our PARIS approach can predict more
accurate segmentation and motion parameters regardless of
the categories, and produces more geometric details even on
thin structures (e.g. Scissor, Blade).
Novel view synthesis and articulation generation. Ta-
ble 1 reports quantitative results for novel view synthesis
(NVS) at two given states. We observe that our PARIS
approach can produce comparable high-fidelity renderings
with our baseline method within the same number of train-
ing iterations. Ours-ICP can produce higher quality render-
ings on average. This is not surprising since the baseline
method learns one static object at a time without involv-
ing any transformation. Therefore, the baseline can con-
verge faster and better within the same number of iterations
compared to our composite NeRFs where joint motion opti-
mization is involved We also show the rest of the qualitative
results for articulation generation with ground truth states
as the comparison in Figure 2.

B.2. Failure Cases

We discovered two failure modes in our approach which
both occur on objects with a revolute joint. We show qual-
itative and quantitative results that illustrate these failure
cases in Figure 3 and table 2. We also compare our ap-
proach with Ditto to demonstrate that these failure cases
also impact prior work.
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Figure 1. Additional qualitative results showing object and part reconstruction, as well as the predicted motion joint axis. Static parts are
cblue while movable parts are yellow. All the categories above are ‘unseen’ for Ditto. There are significant axis prediction and segmentation
errors. Moreover, ∗ denotes a wrong motion type prediction. In contrast, PARIS produces better segmentation with more geometric details
while predicting an accurate motion axis across all the categories.

Metrics Methods Stapler USB Scissor Fridge FoldChair Washer Blade Laptop Oven Storage Mean

PSNR↑ Ours-ICP 40.18 39.90 41.05 37.68 34.81 40.12 41.84 40.23 33.52 36.72 38.61
PARIS 38.59 38.24 38.70 38.78 33.11 40.18 38.56 38.66 35.41 37.08 37.62

SSIM↑ Ours-ICP 0.997 0.995 0.997 0.992 0.990 0.992 0.998 0.993 0.979 0.994 0.993
PARIS 0.995 0.992 0.996 0.994 0.986 0.991 0.996 0.990 0.981 0.994 0.992

Table 1. Quantitative results of the rendering quality from novel views. Our PARIS trains two NeRFs compositely while jointly estimating
motion, and our rendering quality is comparable to Ours-ICP which is trained on a completely static object for each state.

Geometry Motion

Example Method CD-w↓ CD-s↓ CD-m↓ Ang Err↓ Pos Err↓ Geo Dist↓

ClosedFridge Ditto 3.17 4.29 1.75 1.43 0.10 17.26
PARIS 4.05 3.59 11.28 2.26 0.43 66.92

SymmetricChair Ditto 1.65 41.52 107.03 86.30 0.06 111.27
PARIS 0.26 2.83 0.16 0.04 0.03 180.01

Table 2. Quantitative results for failure cases on synthetic data.
Each example illustrates one failure mode. ClosedFridge shows
the results when one of the given states has severe occlusion. Our
methods predict an incorrect joint axis and rotation angle, which
also leads to an unsatisfactory segmentation for the movable part.
Ditto is less sensitive to occlusion and produces better part sur-
faces, but the rotation angle is also inaccurate. SymmetricChair
shows the results when the movable part is geometrically sym-
metric. We can produce high-quality output but the rotation angle
is flipped due to the symmetry (see angle error of ≈ 180). Our
method cannot resolve such symmetric ambiguities. Ditto also
fails in this example and has quite high angle error.

Severe occlusion. If the movable part has severe occlu-
sion across all views (e.g., the door of a refrigerator is fully
closed in one of the given states), there is a high chance to
produce a wrong motion estimation and unsatisfactory part
segmentation. We demonstrate this failure mode with the
ClosedFridge example. We observe that Ditto can predict
better movable part reconstruction and joint axis in this sit-
uation, while PARIS can produce a cleaner static part. Our
undesirable prediction of the movable part and motion is
mainly due to the lack of correspondence points being ob-
served from the input multi-view images. This leaves the
neural fields with “blind views”, which allows the closed
door to be hidden inside the static part. This behavior can
be better illustrated in the articulation generation process
in Figure 4. Specifically, the predicted joint axis is out-
side of the object region, so that the door can be rotated
into the body of the refrigerator to geometrically satisfy the
multi-view observation. To address this issue, we can po-
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Figure 2. Qualitative results demonstrating articulation generation. The ground truth image inputs at given states are provided for compar-
ison in the leftmost and rightmost columns. All the images are rendered from a novel view that is unseen during training. Our high-quality
rendering results demonstrate that our predicted motion parameters and decoupling of the part appearance allow for effective generation of
arbitrary unseen states.

tentially impose additional priors to the joint axis (e.g., the
joint should be attached to the object instead of being al-
lowed to float away from the geometry).

Ambiguities due to geometric symmetries. We might pro-
duce a wrong rotation angle if the movable part is geomet-
rically symmetric even when the joint axis is predicted cor-
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Figure 3. Qualitative results showing failure cases for geometry reconstruction and joint axis prediction. The ClosedFridge example in
the first row illustrates that we fail to predict an accurate joint axis when one of the given states has severe occlusion (completely closed
fridge, leaving interior unobserved). We also produce unsatisfactory part segmentation with wrong motion estimation. The SymmetricChair
example in the second row shows the results for the situation when the movable part is geometrically symmetric. We can still predict an
accurate joint axis with correct part surfaces in this case, but the rotation angle estimate is wrong (see Figure 4).

t=1t=0.5t=0 t=0.75t=0.25GT Start GT End

Figure 4. Articulation generation failure cases using our predicted motion with ground truth image at given states for comparison. The
images are rendered from a novel view that is unseen during training. This figure illustrates how our predicted motion manipulates the
movable part to satisfy the supervision at two given states in a wrong way.

rectly. We demonstrate this failure case with the Symmet-
ricChair example. From Table 2, we can observe that we
produce high-quality part segmentation and joint axis (low
Ang Err and Pos Err). However, the geodesic angle dis-
tance reported is near 180 degrees (bottom right of table).
This 180-degree difference happens because our prediction
of the rotation angle from t = 0 to t = 1 is 80 degrees,
while the ground truth is −100 degrees. This means we
predicted an opposite rotation ending up with the same start
and end states. Figure 4 illustrates how this opposite ro-
tation manipulates the articulation in the wrong direction.
This ambiguity is not surprising since we only have the ob-
ject states in two end states as supervision, and the two so-
lutions are both reasonable in terms of geometry. The only

information that disambiguates the correct rotation direc-
tion is the texture information on the movable part (i.e. seat
of the chair). The texture should stick to the corresponding
face while rotating. However, the color MLP “hacks” the
appearance to look correct. Therefore, we can potentially
resolve this ambiguity by tightening the bonds between the
geometry and appearance in the neural radiance field repre-
sentation.

B.3. More Real Examples

For experiments on real data, apart from reconstructing
the object directly from real RGB-D scan videos, we also
collect multi-view images by rendering a real scan from the
MultiScan [4] dataset as shown in the main paper. The ren-
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Figure 5. Qualitative results for the real examples. Overall, our methods can be applied to real cases, but perform less effectively than
on synthetic data since our methods are sensitive to the error introduced in camera poses, reconstruction, and alignment. We fail motion
estimation of the StorageRen case mainly due to the movable part having severe occlusion which is a limitation we cannot handle for now.
Ditto performs well on these real examples.

Geometry Motion

Example Method CD-w↓ CD-s↓ CD-m↓ Ang↓ Pos↓ Geo↓ Trans↓

DrawerRen Ditto 14.08 16.09 20.35 5.88 - - 0.38
PARIS 15.05 15.86 179.52 1.47 - - 0.26

StorageRen Ditto 12.68 15.06 12.18 1.12 0.95 10.61 -
PARIS 12.58 18.02 101.20 70.82 6.34 47.88 -

Table 3. Quantitative results for real cases. We produce compara-
ble surfaces for the static part and object as a whole with Ditto, but
less accurate surfaces for movable parts. We predict better motion
estimation for the first two examples, but fail in the last example
due to severe occlusion.

dering process is consistent with the configuration for syn-
thetic data.

The evaluation metrics follow the description in the main
paper: angular error (Ang), position error (Pos), geodesic
distance (Geo) and translational error (Trans). We denote
the two examples trained with rendering images as Drawer-
Ren and StorageRen.

We show the qualitative results in Figure 5 and quantita-
tive results in Table 3. The ground truth segmentation and
motion information is annotated in the dataset or manually
annotated using the tool provided by MultiScan.

For geometric reconstruction, we observe that our
PARIS reconstructs comparable surface quality with Ditto
for the whole object and static part, but a less accurate sur-
face for the movable part. The large statistical errors come
from “noise” hidden inside the static part. For motion esti-
mation, we outperform Ditto in the translation case Drawer-
Ren. However, PARIS fails in the other rotation case (Stor-
ageRen) because we cannot handle the situation where one
input state has severe occlusion. Ditto performs better in
this case since they do not suffer from this issue (see Ap-
pendix B.2). Overall, PARIS can be applied to real data but

performs less effectively than on synthetic data due to sensi-
tivity to errors from estimated camera poses, reconstruction
artifacts, and end state alignment. A promising direction
for future work is to increase robustness to such errors by
jointly optimizing over estimated camera poses, and input
end state alignment.
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