
Partition Speeds Up Learning Implicit Neural Representations Based on
Exponential-Increase Hypothesis

Ke Liu1, Feng Liu2, Haishuai Wang1*, Ning Ma1, Jiajun Bu1, Bo Han3

1 Zhejiang Provincial Key Laboratory of Service Robot,
College of Computer Science, Zhejiang University, Hangzhou, China

2School of Computing and Information Systems, The University of Melbourne, Australia
3Department of Computer Science, Hong Kong Baptist University, Hong Kong SAR, China

{keliu99, haishuai.wang, ma ning, bjj}@zju.edu.cn,
fengliu.ml@gmail.com, bhanml@comp.hkbu.edu.hk

Abstract

Implicit neural representations (INRs) aim to learn a
continuous function (i.e., a neural network) to represent an
image, where the input and output of the function are pixel
coordinates and RGB/Gray values, respectively. However,
images tend to consist of many objects whose colors are not
perfectly consistent, resulting in the challenge that image
is actually a discontinuous piecewise function and cannot
be well estimated by a continuous function. In this paper,
we empirically investigate that if a neural network is en-
forced to fit a discontinuous piecewise function to reach a
fixed small error, the time costs will increase exponentially
with respect to the boundaries in the spatial domain of the
target signal. We name this phenomenon the exponential-
increase hypothesis. Under the exponential-increase hy-
pothesis, learning INRs for images with many objects will
converge very slowly. To address this issue, we first prove
that partitioning a complex signal into several sub-regions
and utilizing piecewise INRs to fit that signal can signifi-
cantly speed up the convergence. Based on this fact, we
introduce a simple partition mechanism to boost the per-
formance of two INR methods for image reconstruction:
one for learning INRs, and the other for learning-to-learn
INRs. In both cases, we partition an image into different
sub-regions and dedicate smaller networks for each part.
In addition, we further propose two partition rules based
on regular grids and semantic segmentation maps, respec-
tively. Extensive experiments validate the effectiveness of
the proposed partitioning methods in terms of learning INR
for a single image (ordinary learning framework) and the
learning-to-learn framework. Code is released here.

*Corresponding author: Haishuai Wang (haishuai.wang@zju.edu.cn)

1. Introduction

Recently, an innovative model for data/signal repre-
sentation called implicit neural representations (INRs) has
aroused researchers’ great attention, due to their remarkable
visual performance in computer vision tasks, including im-
age generation [29, 9, 31, 4] and novel views synthesis [12].
To fit such an implicit neural representation for a 2D im-
age, we usually learn a continuous function formalized by
a neural network, which takes space coordinates x ∈ R2 as
input and outputs the color values at the queried coordinate
(y ∈ R3 if RGB and y ∈ R if gray).

However, in-the-wild images are actually discontinuous
piecewise functions. They consist of discrete objects with
not perfectly consistent colors (as shown in Figure 1(a)).
Large gradients exist on the boundaries between two dis-
continuous parts, preventing the neural network from con-
verging to a small error when fitting images. To study the
above issue, related research called “spectral bias” [19, 34]
has proved that neural networks prioritize learning the low-
frequency components. Yet, they only describe this phe-
nomenon from the view of the implicit frequency domain
and do not propose a quantitative relation between the con-
vergence rate and the attribute of the target signal.

In this paper, we first re-examine the above phenomenon
from the explicit spatial domain and empirically investigate
a quantitative relation: the time complexity of fitting a dis-
continuous piecewise function with a neural network would
increase exponentially with respect to the number of bound-
aries. For example, in Figure 1(b) and 1(c), we use SIREN
MLPs [29] to fit 1D synthetic signals and 2D synthetic sig-
nals where N boundaries exist in their spatial domain. We
then explore the relation between the required convergence
step n and the number of boundaries N , and find that the
relation curves align with the exponential function. We

https://github.com/1999kevin/INR-Partition.git

(a) (c)(b)

1D Signal 2D Images

Figure 1. (a) Discontinuous parts exist obviously in regions with red boxes, which motivates us to use piecewise functions to represent the
complex signals. (b) & (c) We dedicate a single neural network to fit the 1D and 2D synthetic signals with N boundaries. The results show
that the relation between the convergence step n and the number of boundaries N align with the exponential function n ∝ O(pN), where
p = 1.0656 for 1D synthetic signals and p = 1.00815 for 2D synthetic signals. The detailed experiment is presented in Appendix A.

call this phenomenon the exponential-increase hypothesis.
Under this hypothesis, the optimization process of fitting a
high-resolution in-the-wild image with a single continuous
INR will converge at a slow rate.

Based on the exponential-increase hypothesis, we math-
ematically prove that partitioning images into several parts
and learning INRs within each part can reduce the exponen-
tial complexity to linear complexity and significantly de-
crease the convergence time. In light of this fact, we pro-
pose partition-based INR methods and utilize partition in
two INR frameworks: one for learning INRs, and the other
for learning-to-learn INRs. Specifically, in both frame-
works, we partition an image into different sub-regions
based on particular rules and dedicate smaller networks for
each sub-region. We also propose two partition rules: one
is based on regular grids, and the other is based on semantic
segmentation maps. Both of them can speed up the conver-
gence of learning INRs as well as learning-to-learn INRs.
In summary, the contributions of this work are as follows.

• From the view of spatial domains, we investigate the
exponential relation between the network convergence
rate and the number of boundaries in the target signals,
namely the exponential-increase hypothesis.

• Based on the exponential-increase hypothesis, we
mathematically prove that partition reduces the expo-
nential complexity of fitting all boundaries to the linear
complexity of fitting separate regions.

• We propose partition-based learning and learning-to-
learn INRs frameworks for image reconstruction task.
We also propose two partition rules that are based on
regular grids or semantic segmentation maps.

• Extensive experiments on image reconstruction show
that (i) partition boosts learning INRs framework to
faster convergence, (ii) partition boosts learning-to-
learn INRs framework to better reconstruction perfor-
mance with fixed optimization steps.

2. Related Work

Implicit Neural Representations. Implicit Neural Rep-
resentations (INRs) [39] are emerging topics of interest in
the artificial intelligence community. By mapping a coor-
dinate x to a quantity with a neural network (e.g., MLP),
these continuous representations have shown great potential
in 3D scene reconstruction [6, 8, 16, 11], digital humans
tasks [42, 25, 26], 2D images generation [18, 29, 31, 46],
3D shape and appearance generation [7, 27, 14, 12], video
representation [1], physics-informed problems [20, 17] and
so on. A lot of works have been conducted on differ-
ent aspects of INRs, such as the prior learning and con-
ditioning [30, 35, 37], the computation and memory ef-
ficiency [10], the expression capacity [21, 44], the edit
ability [30] and the generalization across different sam-
ples [28, 33].

Partition Techniques. When scaling up to signals with
large domains, INRs always fail due to the high non-
linearity of mapping function [23] and heavy time con-
sumption. Thus, partition are extensively employed, e.g.
Voronoi spatial decomposition by DeRF [21], distillation
for training thousands of MLPs by KiloNeRF [22], multi-
scale block-coordinate decomposition by ACRON [9], scal-
able large-scale NeRF [32, 36]. Although these works have
a good effect on representing large-scale images or scenes,
they seldom discuss why partition improves the training ef-
ficiency of learning single INR and do not discuss the effect
of partition on the learning-to-learn INRs framework.

Neural Network Spectral Bias. Spectral bias [19, 40],
or frequency principle [41, 24], is a phenomenon that neu-
ral networks prioritize learning the low-frequency parts of
signals. Lots of works have been presented to enable an
MLP to fit high-frequency functions, e.g. Fourier feature
mapping by Tancik et al. [34] and periodic activation func-
tions by Sitzmann et al. [29]. In this paper, we re-examine
the spectral bias and propose the exponential-increase hy-
pothesis from the spatial domain, which is an explicit and

predict L2 loss

backward optimization

{θ1, θ2,...θk} Ground Truth

x

y
Gray/RGB

(a) MLP for INRs (b) Framework for partition-based INR training paradigm

Figure 2. (a) MLP architecture for image INR. The inputs are the coordinates (x, y) ∈ R2 and the outputs are Gray/ RGB values. (b)
Framework for partition-based Learning INRs. We dedicate different MLPs to fit different parts of the image.

quantitative description of the relation between the network
convergence rate and the properties of the target signals.

Learning-to-learn INRs. Meta-learning is applied to
train a meta-learner that can quickly adapt to new tasks
with few training examples. MetaSDF [28] first introduced
MAML [5] to learn excellent INR priors over the respective
function space, leading to faster fine-tuning and better ge-
ometry reconstruction. Tancik et al. [33] re-produced such
findings with Reptile [13] on a wider variety of signal types.
Yuce et al. [44] presented a theoretical analysis of meta-
learning INRs from the view of dictionary learning. Based
on these works, we show that partition in INR meta-learning
framework can modulate the spectral bias within each par-
tition part and improve the effect of learning-to-learn INRs.

3. Partition for learning and learning-to-learn
Implicit Neural Representations

Motivations Considering a field q and coordinate x, INR
learns a function Φ with parameters Θ to fit it, which is de-
noted as q = Φ(x; Θ). SIREN [29] shows that MLPs with
ReLU activation fail to represent the derivatives of the target
signal. So they propose periodic activation functions to rep-
resent complex signals and their derivatives. However, even
though SIREN is able to represent complex signals, a lot of
optimization steps are required due to the fact that too many
boundaries with large gradients exist in the spatial domain
of the complex signal. We argue that the events of success-
fully representing each boundary with a large gradient by
the neural network parameters Θ are independent with each
other. Then we establish the following hypothesis:

Hypothesis 1. Denote the complexity that one boundary
with large derivatives is represented by Θ as p, then the
complexity that all boundaries are represented by Θ is
O(pN), where N is the number of boundaries with large
derivatives within the spatial domain.

We name this hypothesis the exponential-increase hy-
pothesis. Experiments to demonstrate this hypothesis are
shown in Appendix A. To mitigate the issue caused by this

hypothesis, we deliver partition to reduce the exponential
complexity of fitting all boundaries to the linear complexity
of fitting several regions. Specifically, we divide the whole
domain into smaller domains and use independent MLPs to
fit a piecewise function to represent the whole function.

Formally, if the whole domain is divided into k sub-
domains, the number of boundaries falling in each sub-
domain are {N1, N2, ..., Nk}, where N =

∑k
i=1 Ni. We

argue that the optimizations for all MLPs are parallel. If
we dedicate neural networks with full capacity to fit each
sub-domain, we can assume the complexity of fitting one
boundary is still p, then the total complexity of parallelly
fitting all sub-domains with separate neural networks is

pN1 + pN2 + ...+ pNk =

k∑
i=1

pNi . (1)

Then we can establish the following proposition:

Proposition 1. In case of k ≥ 3, the complexity of dedicat-
ing neural networks with full capacity for each sub-domain
is less than the complexity of representing the whole domain
with a single neural network, i.e.

∑k
i=1 p

Ni < pN .
Proof. Defining N̂ = max(N1, N2, ..., Nk), we have:∑k

i=1 p
Ni

pN̂
=

k∑
i=1

pNi

pN̂
≤

k∑
i=1

1 = k. (2)

Empirically, we should optimize each neural network at
least several times, so we have at least pNi ≥ 2, then the
following inequation holds:

pN

pN̂
=

p(N1+N2+...+Nk)

pN̂
=

∏
Ni ̸=N̂

pNi ≥ 2k−1. (3)

In case of k ≥ 3, we have k < 2k−1 and
∑k

i=1 p
Ni <

pN . Proposition 1 is proved.

Theoretically, with larger k, Proposition 1 can be gener-
alized to the case of fitting each sub-domain with smaller
neural networks, whose complexity of fitting one boundary
is larger than p. We show the proof and the discussion of
this case in Appendix B. Papers about the spectral bias of

θ0 for particular task

Meta θ0

Clone

Clone

...
...

predict

predictPartition-based
inner loop task

Partition-based
inner loop task

Reconstruction
loss

Meta backward

predict L2 loss

inner backward * m Inner loop task

Clone

（a）Framework for partition-based learning-to-learn INRs

（b）Inner loop task for learning-to-learn INRs

θ0 for
particular task θ ,…, θθ

θ ,…, θθ

{ {
Ground truth

Figure 3. (a) Framework for partition-based learning-to-learn INRs. A meta-learner is applied to sample tasks of learning INRs and learns
an initialized weight that can quickly fine-tune to a new image. (b) Partition-based inner loop task. The initialized weights will be copied
and then optimized for each head within its corresponding sub-domain. (Best view in color.)

INRs [19, 34, 44] show that INRs are hard to fit the signals
with high-frequency components. In fact, the boundaries in
the images are high-frequency components of signals and
we show that partition helps to reduce the high-frequency
components of the input signals in Appendix D.

By now, we have mathematically proved that partition
can speed up the convergence of INRs by reducing the ex-
ponential complexity to linear complexity. And we will
present how we practically utilize the partition methods in
INRs in the following sections.

Partition for Learning INRs In this part, we show how
we can apply partition to learning INRs for 2D images. The
framework of the partition-based learning INR method is
shown in Figure 2. We propose to model the INR of a given
image I as a weighted sum of k neural networks (denoted
as heads). Mathematically, this process can be expressed as

I(x) =

k∑
n=1

ωn
ϕ(x)Iθn(x), (4)

where n is the head index. ωn
ϕ(x) : R2 7→ {0, 1} is the

mask for head n, and ωϕ(x) : (ω
1
ϕ(x), ω

2
ϕ(x), ..., ω

k
ϕ(x)) ∈

{0, 1}k is the mask for all heads and satisfies ∥ωϕ(x)∥1 =
1. This setting ensures that each coordinate in the image is
only represented by one single head. When predicting an

image, each coordinate is only required to be inputted into
one single head. Therefore, both the time complexity and
memory consumption of predicting the whole image with
our partition-based models do not increase.

In practice, we explore two different partition rules for
2D images: one is based on regular grids and the other is
based on semantic segmentation maps for 2D images. De-
tailed implementation is discussed in Section 4.

Partition for Learning to Learn INRs In [28, 33], they
have shown that meta-learning algorithms can provide ex-
cellent initial weight parameters for learning INRs, which
leads to faster convergence and better generalization. In this
part, we show that our partition methods can be integrated
into the meta-learning algorithm for INRs, and lead to bet-
ter generalization and a more flexible inference process than
the original meta-learning algorithm for INRs.

Considering a dataset including observations of signals
T from a particular distribution T and a fixed number of op-
timization steps m, the meta-learning algorithms for INRs
seek to find an initial weight θ∗0 that will result in the lowest
possible final loss L (θm) if optimizing a network fθ for m
steps to represent a new signal from T :

θ∗0 = argmin
θ0

ET∼T [L (θm (θ0, T))] . (5)

Figure 4. (a) Visualization of partition based on regular grids (PoG). (b) Visualization of partition based on HFS semantic segmentation
maps (PoS). (Better view in color.)

Combining with partition techniques, we partition the
whole input domain into k sub-domains with partition rule
ω and seek to find an initial weight θ∗0 that serves as the
initial weight of each head for each sub-domain. This will
result in the lowest possible final total loss when optimizing
a set of network F = {fθ1 , fθ2 , ..., fθn , }, each of which
will represent a part of the new signal from T :

θ∗0 = argmin
θ0

ET∼T

[
k∑

n=1

L (θnm (θ0, T, ω))

]
. (6)

We follow MAML [5] to learn an initial weight that
can serve as a good starting point for gradient descent for
all heads. Specifically, given a task T and the number
of optimization steps m, our partition-based learning-to-
learn INRs framework treats these task-specific optimiza-
tion steps as inner loops, and wraps an outer loop to sample
different signals Tj from T . We generate their correspond-
ing partition rules ωj to learn the initial weight θ∗0 . Denote
the meta-learning rate as β and the parameters of head k at
i inner loop step and j outer loop step as (θki)j , then the
updated rule of the parameters is defined as follows:

(θ0)j+1 = (θ0)j − β∇θ

k∑
n=1

L (θnm ((θ0)j , Tj , ωj)) . (7)

The experiments are conducted in 2D image reconstruc-
tion, and direct point-wise observations of the signal T are
available. Therefore, we can supervise F with gradient de-
scent using simple L2 loss:

L(θ) =
∑
i

∥F (xi)− T (xi)∥22 . (8)

So far, we have presented our partition-based learning
INRs method as well as the partition-based learning-to-
learn INRs method. The architectures of these two methods
are presented in Figure 2 and 3 respectively.

4. Implementation

In this section, we introduce two partition rules that both
work well under our frameworks. One is based on regular
grids (PoG for short) and the other is based on semantic
segmentation maps (PoS for short).

Partition based on regular grids. A simple but efficient
partition rule is using regular grids to decompose the whole
input domain. This method is widely used in image process-
ing tasks based on ViT [3], while [21, 22] have discussed
the effect of regular grids decomposition in neural radiance
fields tasks. Specifically, for 2D images, we subdivide the
input domain into uniform grids of resolution r = (rx, ry),
and utilize an independent neural network to fit the content
within each grid. Therefore the mapping function m from
the pixel position x to its corresponding neural network in-
dex is defined as:

m(x) =
⌊x
r

⌋
. (9)

Partition based on Semantic Segmentation Maps. We
also seek a more flexible and reasonable partition rule, due
to the fact that the real images contain non-homogeneous
structures and the regular grid partition may violate the con-
tinuity of the images. Considering that an in-the-wild image
always consists of several parts, it is reasonable to define a
sub-domain as the region in which all pixels belong to the
same part. Therefore, we seek a partition rule based on im-
age semantic segmentation maps. It is clear that partitioning
images based on their semantic segmentation maps helps
to reduce the boundaries (or high-frequency components)
within each partition part.

Specifically, we start with a hierarchical feature selec-
tion (HFS) [2] algorithm, which is a rapid image segmen-
tation system and reports over-segmentation results. The
over-segmentation results usually assign the regions that are

Ground Truth SIREN

PoG PoS

step step

Figure 5. The first row presents PSNR vs. step curves for fitting the
ground truth image with SIREN-based models and ReLU-MLP-
based models (4 heads). The second and third rows present the
visual results of optimizing siren-based models for 500 steps. Re-
sults from models with partition contain much fewer artifacts with
the same optimization steps.

not connected with the same labels and the number of re-
gions is always too large. Thus, we apply the connected-
components algorithm on the initial segmentation results
to re-label those unconnected parts. And we finally apply
a greedy region-merging algorithm to obtain segmentation
results with a particular number of regions.

The performance of PoG and PoS methods are demon-
strated in Figure 4 while we present the formalization of the
PoS algorithm in Appendix C.

5. Experiments
In this part, we will first compare the convergence speed

of learning the INR for a single in-the-wild image with two
modern MLP architectures under the condition of taking
partition or not taking partition. We show that our parti-
tion methods achieve good performance on both two INR
architectures. Then we choose SIREN [29] as our basic ar-
chitecture and follow MetaSDF [28]’s setting to train meta
models with or without partition.

5.1. Partition-based Learning INRs

Settings. We first choose a landscape image with dimen-
sion 380× 254 (shown in Figure 5 ground truth) and try to
learn an INR for this image. Two popular network archi-
tectures are chosen to evaluate our methods: one is SIREN
with periodic activation functions [29] and the other is MLP
with ReLU activation functions and positional embedding.

On top of these two baselines, our two partition rules are
implemented. To fairly demonstrate the effect of our par-

（a）

（b） （c）

Figure 6. Typical results for applying models with different par-
titioned heads on images. (a) shows the original image and (b)
shows its 12-part segmentation result. (c) presents the PSNR val-
ues of all models. The results indicate that models with more heads
tend to achieve higher PSNR at fixed training steps.

Table 1. Mean PSNR values for LSUN test images. We optimize
the SIREN-based models for 300 steps and ReLU-MLP-based
models for 1000 steps. More results are in Appendix G

Methods PSNRs↑ Methods PSNRs↑
SIREN 21.211 ReLU-MLP 19.844
SIREN-PoG 23.864 ReLU-PoG 22.672
SIREN-PoS 24.485 ReLU-PoS 22.863

tition methods, we dedicate neural networks with the same
architecture and hyper-parameters but smaller capacity to
fit each sub-region, namely heads. We guarantee that the
total capacity of all heads is close to the capacity of base-
lines. The detailed implementation of these two INR archi-
tectures as well as model parameter settings are presented
in Appendix E. Following [29]’s implementation, we apply
the Adam optimizer with a learning rate of 1e− 4. To make
a comparison between the two partition methods, the num-
ber of partitioned regions is fixed to 4 (2× 2 for PoG).

Results. We first present the PSNR curves with re-
spect to optimization steps for applying partition methods
on both two baselines, as shown in Figure 5 (the running
time and memory consumption of partition-based models
are the same or less than the baseline models, which will be
discussed in Appendix G.). On both two baseline architec-
tures, our two partition rules result in faster convergence,
while partition based on semantic segmentation maps has
better performance than partition based on regular grids. We
can observe that for SIREN-based architecture, the model
with PoS converges to a high PSNR with very limited steps
(less than 100), while the original SIREN needs more than
500 steps to converge to the same PSNR value. For ReLU-
MLP-based architecture, the required steps of three cases
that the PSNR value reaches 20 are 957, 672, and 445 re-
spectively, which indicates that our partition method based
on regular grids (PoG) boosts to 50% speed-up while the
partition method based on segmentation maps (PoS) results
in 100% speed-up.

Figure 7. Training curves and intermediate results for example
super-resolution image. The first row contains the experiments for
SIREN-based models while the second row contains experiments
for ReLU-MLP-based models. We present the intermediate results
of optimizing SIREN-based models for 400 steps and optimizing
ReLU-MLP-based models for 4000 steps.

Fewer artifacts for SIREN. As shown in Figure 5,
SIREN [29] fails when fitting a large image and tends to
generate periodic artifacts. This failure has been reported by
[44] and is due to the imperfect frequency recovery. How-
ever, the results from our partition-based models generate
fewer artifacts with the same optimization steps. This is
because partition helps to reduce the high-frequency com-
ponents that one single SIREN needs to represent, which
partly alleviates the negative effect of SIREN.

Robustness. To prove the robustness of our partition
methods, we also evaluate our methods on LSUN bedroom
image test set [43], which contains 300 in-the-wild images.
We explore the mean PSNR values with 300 optimization
steps for SIREN-based models and 1000 optimization steps
for ReLU-MLP-based models. The results are reported in
Table 1. We can observe that both of our partition meth-
ods drive the models to a higher PSNR value with the same
optimization steps.

More heads, faster convergence. We conduct exper-
iments to find the optimal number of heads for both two
architectures and two partition methods. A typical exam-
ple is shown in Figure 6. With a different number of heads
and two partition methods, we optimize SIREN-based mod-
els with 200 steps and ReLU-MLP-based models with 1200
steps. The results show that the models with more heads
generally tend to converge to better results and achieve
higher PSNR values at the fixed training step. Extensive
experiments and discussions of models with different num-
bers of heads on more images are presented in Appendix F.

Scale to super-resolution images. Due to the previ-
ous conclusion, we can easily improve the INR optimiza-
tion efficiency of super-resolution images by increasing the
number of partition heads. A typical example of learning
INRs for a super-resolution image with 700× 1000 dimen-
sion is shown in Figure 7. By partitioning the whole image

Table 2. Mean PSNR values performance for SIREN models with
different training and fine-tuning methods. For short, we rewrite
G as the PoG partition method and S as the PoS partition method.
We mark a superscript G/S if we apply the corresponding method
in the training stage and mark a subscript G/S if we apply the cor-
responding method in the fine-tuning stage.

Setting PSNR ↑ Setting PSNR ↑
1 View 3 View 1 View 3 View

SIREN 19.42 22.60 - - -
SIRENG 19.64 22.95 SIRENS 19.85 23.09
SIRENG

G 19.77 24.23 SIRENS
S 20.00 23.93

SIRENS
G 19.93 23.89 SIRENG

S 18.11 20.33

into 9 parts, we can significantly improve the reconstruc-
tion performance of both SIREN-based models and ReLU-
MLP-based models. More experiments of learning INRs for
super-resolution images are presented in Appendix G.

5.2. Partition-based Learning-to-learn INRs

Settings. To verify the effect of our partition-
based learning-to-learn INRs framework, we follow
MetaSDF [28] and apply our partition methods in the
MAML framework to learn an initial weight that can
quickly fine-tune to an unseen image. The outdoor church
images from LSUN dataset [43] with the size of 256× 256
are chosen for evaluating the method. The training set con-
tains about 126k images and the test set includes 300 im-
ages. Following [28, 33], we choose SIREN as our ba-
sic model and set up the number of inner loop step N as
3, which means that our model sees each image only three
times. We apply the per-parameter-per-step inner learning
rate strategy with initial learning rate α = 1e − 5. All of
the meta-models are trained with an outer loop learning rate
β = 1e− 4 and a batch size of 4.

Since our partition methods duplicate the initial weight
for each head, we maintain one copy of per-parameter-per-
step learning rates for a single head and share it with all
heads. The SIREN model in our implementation contains
3 hidden layers and 128 hidden features, which is also the
set-up for each head in our models with partition. As a re-
sult, the weights trained from the original SIREN and the
weights trained from our partitioned-based models have the
same keys. Thanks to these settings, in the inference phase
we can fine-tune based on our partition methods with the
initialized weights trained from the original SIREN.

Results. On top of baseline SIREN, We demonstrate
the effect of our two partition methods both on the train-
ing phase and the inference phase. The mean PSNR values
for 1 View and 3 View fine-tuning on 300 images based
on models with different training and fine-tuning mecha-
nisms are shown in Table 2. The results show that only
fine-tuning based on our partition methods with the initial-
ized weights trained from the original SIREN can lead to
better performance than baseline, no matter whether we use

Figure 8. Visual results of models with different training and fine-tuning methods. The same abbreviation as in Table 2. The results from
our partition-based models contain less noise and sharper edges than the SIREN model. (Better view in color.)

SIRENSIREN

Figure 9. Performance of fine-tuning with PoS on the PoG trained
initialized weight, and its opposite case. The model trained with
PoG but fine-tuned with PoS fails, while the model trained with
PoS but fine-tuned with PoG achieves good performance. (Better
view in color.)

PoG partition or PoS partition. And the experimental re-
sults also indicate that the model employing PoG partition
during both training and inference phases exhibits the high-
est PSNR for 3 View fine-tuning, while the model utilizing
PoS partition during both phases achieves the highest PSNR
for 1 View fine-tuning. Therefore we prove that fine-tuning
based on our partition methods with the initialized weight
trained from the partition models has the best performance.
For detailed description, a typical example is presented in
Figure 8. The result shows that the images obtained from
our partition methods contain less noise and sharper bound-
aries than the result from the baseline SIREN. More visual
results and discussions are attached in Appendix H.

PoS partition as a more flexible choice. As shown in
Figure 9, fine-tuning with the PoS method from the initial-
ized weights trained with the PoG method leads to a poor
result, while the opposite case still maintains good perfor-
mance. This phenomenon meets our expectations because
each head in the PoG method only learns to fit a regular
region and fails to fit an irregular region when fine-tuning
with the PoS method. On the contrary, the heads in the PoS
method learn to fit regions with arbitrary shapes, including
the regular grid. As a result, the PoS method can be consid-
ered more flexible than the PoG method.

6. Conclusion
In this paper, we investigate the dilemma of fitting a dis-

continuous signal via a continuous function (e.g., a neural
network) and demonstrate that the time complexity to force
a neural network to fit a discontinuous function is exponen-
tially increasing with the number of high gradients in the
input domain, which we call exponential-increase hypoth-
esis. We consider the exponential-increase hypothesis as a
quantitative description of spectral bias [19, 34, 44] from
the spatial domain. We prove that partitioning the input do-
main into several sub-domains and dedicating smaller neu-
ral networks for each sub-domain help to alleviate this con-
tradiction. Based on this observation, we propose two par-

tition methods for learning and learning-to-learn INRs. We
also present two partition rules: one is partitioning based
on regular grids and the other is based on semantic seg-
mentation maps. Our methods significantly speed up the
convergence of learning INRs from scratch and also lead
to better results for fine-tuning a new image at fixed steps
for learning-to-learn INRs. Our findings in the paper can
serve as theoretical support and inspire the follow-up work
on learning more powerful INRs for in-the-wild scenes.

Acknowledgements
This work is supported by the National Natural Science

Foundation of China (Grant Nos. 62202422 and 61972349),
and the National Key Research and Development Program
(Grant Nos. 2018YFB1403202, 2019YFF0302601, and
2020YFF0304905). BH is supported by NSFC Young Sci-
entists Fund No. 62006202 and Guangdong Basic and Ap-
plied Basic Research Foundation No. 2022A1515011652.

References
[1] Hao Chen, Bo He, Hanyu Wang, Yixuan Ren, Ser Nam Lim,

and Abhinav Shrivastava. Nerv: Neural representations for
videos. Advances in Neural Information Processing Systems,
34:21557–21568, 2021. 2

[2] Ming-Ming Cheng, Yun Liu, Qibin Hou, Jiawang Bian,
Philip Torr, Shi-Min Hu, and Zhuowen Tu. Hfs: Hierar-
chical feature selection for efficient image segmentation. In
European conference on computer vision, pages 867–882.
Springer, 2016. 5

[3] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020. 5

[4] Emilien Dupont, Hyunjik Kim, SM Ali Eslami,
Danilo Jimenez Rezende, and Dan Rosenbaum. From
data to functa: Your data point is a function and you can
treat it like one. In International Conference on Machine
Learning, pages 5694–5725. PMLR, 2022. 1

[5] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-
agnostic meta-learning for fast adaptation of deep networks.
In International conference on machine learning, pages
1126–1135. PMLR, 2017. 3, 5

[6] Zekun Hao, Hadar Averbuch-Elor, Noah Snavely, and Serge
Belongie. Dualsdf: Semantic shape manipulation using a
two-level representation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 7631–7641, 2020. 2

[7] Jianwen Lou, Xiaoxu Cai, Junyu Dong, and Hui Yu. Real-
time 3d facial tracking via cascaded compositional learn-
ing. IEEE Transactions on Image Processing, 30:3844–
3857, 2021. 2

[8] Jianwen Lou, Yiming Wang, Charles Nduka, Mahyar
Hamedi, Ifigeneia Mavridou, Fei-Yue Wang, and Hui Yu.

Realistic facial expression reconstruction for vr hmd users.
IEEE Transactions on Multimedia, 22(3):730–743, 2019. 2

[9] Julien NP Martel, David B Lindell, Connor Z Lin, Eric R
Chan, Marco Monteiro, and Gordon Wetzstein. Acorn:
Adaptive coordinate networks for neural scene representa-
tion. arXiv preprint arXiv:2105.02788, 2021. 1, 2, 14

[10] Daniel Meister, Shinji Ogaki, Carsten Benthin, Michael J
Doyle, Michael Guthe, and Jiřı́ Bittner. A survey on bound-
ing volume hierarchies for ray tracing. In Computer Graph-
ics Forum, volume 40, pages 683–712, 2021. 2

[11] Mateusz Michalkiewicz, Jhony K Pontes, Dominic Jack,
Mahsa Baktashmotlagh, and Anders Eriksson. Implicit sur-
face representations as layers in neural networks. In Proceed-
ings of the IEEE/CVF International Conference on Com-
puter Vision, pages 4743–4752, 2019. 2

[12] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. Communications of the ACM, 65(1):99–106, 2021. 1,
2, 16

[13] Alex Nichol, Joshua Achiam, and John Schulman. On
first-order meta-learning algorithms. arXiv preprint
arXiv:1803.02999, 2018. 3

[14] Michael Niemeyer and Andreas Geiger. Giraffe: Represent-
ing scenes as compositional generative neural feature fields.
In Proceedings of IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 11453–11464, 2021. 2

[15] Henri J Nussbaumer. The fast fourier transform. In Fast
Fourier Transform and Convolution Algorithms, pages 80–
111. Springer, 1981. 12

[16] Jeong Joon Park, Peter Florence, Julian Straub, Richard
Newcombe, and Steven Lovegrove. Deepsdf: Learning con-
tinuous signed distance functions for shape representation.
In Proceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, pages 165–174, 2019. 2

[17] Samuel Pfrommer, Mathew Halm, and Michael Posa.
Contactnets: Learning discontinuous contact dynamics
with smooth, implicit representations. arXiv preprint
arXiv:2009.11193, 2020. 2

[18] Dian Qin, Haishuai Wang, Zhe Liu, Hongjia Xu, Sheng
Zhou, and Jiajun Bu. Hilbert distillation for cross-
dimensionality networks. Advances in Neural Information
Processing Systems, 35:11726–11738, 2022. 2

[19] Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix
Draxler, Min Lin, Fred Hamprecht, Yoshua Bengio, and
Aaron Courville. On the spectral bias of neural networks.
In International Conference on Machine Learning, pages
5301–5310. PMLR, 2019. 1, 2, 4, 8

[20] Maziar Raissi, Paris Perdikaris, and George E Karniadakis.
Physics-informed neural networks: A deep learning frame-
work for solving forward and inverse problems involving
nonlinear partial differential equations. Journal of Computa-
tional physics, 378:686–707, 2019. 2

[21] Daniel Rebain, Wei Jiang, Soroosh Yazdani, Ke Li,
Kwang Moo Yi, and Andrea Tagliasacchi. Derf: Decom-
posed radiance fields. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
14153–14161, 2021. 2, 5

[22] Christian Reiser, Songyou Peng, Yiyi Liao, and Andreas
Geiger. Kilonerf: Speeding up neural radiance fields with
thousands of tiny mlps. In IEEE/CVF International Confer-
ence on Computer Vision, pages 14335–14345, 2021. 2, 5

[23] Peiran Ren, Jiaping Wang, Minmin Gong, Stephen Lin, Xin
Tong, and Baining Guo. Global illumination with radi-
ance regression functions. ACM Trans. Graph., 32(4):130–1,
2013. 2

[24] Basri Ronen, David Jacobs, Yoni Kasten, and Shira Kritch-
man. The convergence rate of neural networks for learned
functions of different frequencies. Advances in Neural In-
formation Processing Systems, 32, 2019. 2

[25] Shunsuke Saito, Zeng Huang, Ryota Natsume, Shigeo Mor-
ishima, Angjoo Kanazawa, and Hao Li. Pifu: Pixel-aligned
implicit function for high-resolution clothed human digitiza-
tion. In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pages 2304–2314, 2019. 2

[26] Shunsuke Saito, Jinlong Yang, Qianli Ma, and Michael J
Black. Scanimate: Weakly supervised learning of skinned
clothed avatar networks. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 2886–2897, 2021. 2

[27] Katja Schwarz, Yiyi Liao, Michael Niemeyer, and Andreas
Geiger. Graf: Generative radiance fields for 3d-aware im-
age synthesis. Advances in Neural Information Processing
Systems, 33:20154–20166, 2020. 2

[28] Vincent Sitzmann, Eric Chan, Richard Tucker, Noah
Snavely, and Gordon Wetzstein. Metasdf: Meta-learning
signed distance functions. Advances in Neural Information
Processing Systems, 33:10136–10147, 2020. 2, 3, 4, 6, 7

[29] Vincent Sitzmann, Julien Martel, Alexander Bergman, David
Lindell, and Gordon Wetzstein. Implicit neural representa-
tions with periodic activation functions. Advances in Neural
Information Processing Systems, 33:7462–7473, 2020. 1, 2,
3, 6, 7, 12, 16

[30] Vincent Sitzmann, Michael Zollhöfer, and Gordon Wet-
zstein. Scene representation networks: Continuous 3d-
structure-aware neural scene representations. Advances in
Neural Information Processing Systems, 32, 2019. 2

[31] Ivan Skorokhodov, Savva Ignatyev, and Mohamed Elho-
seiny. Adversarial generation of continuous images. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 10753–10764, 2021. 1, 2

[32] Matthew Tancik, Vincent Casser, Xinchen Yan, Sabeek Prad-
han, Ben Mildenhall, Pratul P Srinivasan, Jonathan T Barron,
and Henrik Kretzschmar. Block-nerf: Scalable large scene
neural view synthesis. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
8248–8258, 2022. 2

[33] Matthew Tancik, Ben Mildenhall, Terrance Wang, Divi
Schmidt, Pratul P Srinivasan, Jonathan T Barron, and Ren
Ng. Learned initializations for optimizing coordinate-based
neural representations. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 2846–2855, 2021. 2, 3, 4, 7

[34] Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara
Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi Ra-
mamoorthi, Jonathan Barron, and Ren Ng. Fourier features

let networks learn high frequency functions in low dimen-
sional domains. Advances in Neural Information Processing
Systems, 33:7537–7547, 2020. 1, 2, 4, 8

[35] Edgar Tretschk, Ayush Tewari, Vladislav Golyanik, Michael
Zollhöfer, Carsten Stoll, and Christian Theobalt. Patchnets:
Patch-based generalizable deep implicit 3d shape represen-
tations. In European Conference on Computer Vision, pages
293–309. Springer, 2020. 2

[36] Haithem Turki, Deva Ramanan, and Mahadev Satya-
narayanan. Mega-nerf: Scalable construction of large-
scale nerfs for virtual fly-throughs. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 12922–12931, 2022. 2

[37] Peihao Wang, Zhiwen Fan, Tianlong Chen, and Zhangyang
Wang. Neural implicit dictionary learning via mixture-of-
expert training. In International Conference on Machine
Learning, pages 22613–22624. PMLR, 2022. 2

[38] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Si-
moncelli. Image quality assessment: from error visibility to
structural similarity. IEEE transactions on image processing,
13(4):600–612, 2004. 17

[39] Yiheng Xie, Towaki Takikawa, Shunsuke Saito, Or Litany,
Shiqin Yan, Numair Khan, Federico Tombari, James Tomp-
kin, Vincent Sitzmann, and Srinath Sridhar. Neural fields in
visual computing and beyond. In Computer Graphics Forum,
volume 41, pages 641–676. Wiley Online Library, 2022. 2

[40] Zhi-Qin John Xu, Yaoyu Zhang, and Tao Luo. Overview
frequency principle/spectral bias in deep learning. arXiv
preprint arXiv:2201.07395, 2022. 2

[41] Zhi-Qin John Xu, Yaoyu Zhang, Tao Luo, Yanyang Xiao,
and Zheng Ma. Frequency principle: Fourier analy-
sis sheds light on deep neural networks. arXiv preprint
arXiv:1901.06523, 2019. 2

[42] Tarun Yenamandra, Ayush Tewari, Florian Bernard, Hans-
Peter Seidel, Mohamed Elgharib, Daniel Cremers, and
Christian Theobalt. i3dmm: Deep implicit 3d morphable
model of human heads. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 12803–12813, 2021. 2

[43] Fisher Yu, Yinda Zhang, Shuran Song, Ari Seff, and Jianx-
iong Xiao. Lsun: Construction of a large-scale image dataset
using deep learning with humans in the loop. arXiv preprint
arXiv:1506.03365, 2015. 7, 12

[44] Gizem Yüce, Guillermo Ortiz-Jiménez, Beril Besbinar, and
Pascal Frossard. A structured dictionary perspective on
implicit neural representations. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 19228–19238, 2022. 2, 3, 4, 7, 8

[45] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shecht-
man, and Oliver Wang. The unreasonable effectiveness of
deep features as a perceptual metric. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 586–595, 2018. 17

[46] Sheng Zhou, Yucheng Wang, Defang Chen, Jiawei Chen,
Xin Wang, Can Wang, and Jiajun Bu. Distilling holistic
knowledge with graph neural networks. In Proceedings of
the IEEE/CVF international conference on computer vision,
pages 10387–10396, 2021. 2

A. Experiment for fitting synthetic signals with
N boundaries

In this part, we introduce how we generate 1D and
2D synthetic signals and empirically demonstrate the
exponential-increase hypothesis. In our synthetic signals,
we simplify the boundaries to the place in the input domain
where the response values would change from 1 to -1 or
from -1 to 1 (it is a special case of large/infinite gradients).
Then the methods to generate 1D and 2D signals with spe-
cific N boundaries in the spatial domain are as follows:

• For 1D synthetic signals with N boundaries, we
choose the input domain as [-1,1], and we randomly
sample N boundaries. We set the range of N as [1, 70].
And we randomly sample 5000 points in the input do-
main as the training set and uniformly sample 5000
points as the testing set.

• For 2D synthetic signals with N boundaries, we
choose the input domain as [−1, 1]2 and we can ran-
domly sample N1 and N2 boundaries in each dimen-
sion of the input domain, where the total number of
boundaries N = (N1 + 1)×N2 +N1 × (N2 + 1) =
2N1N2 +N1 +N2 = O(N1N2). To keep the bound-
aries with uniform distribution along two dimensions,
we sample a series of integers M in the range of
[10, 250] where N1, N2 as two close factors of M and
we calculate the corresponding N based on N1, N2.
We uniformly sample 256× 256 points as the training
set and testing set as fitting an image.

Typical examples of 1D and 2D synthetic signals with
different N boundaries are presented in Figure 10. And the
details of delivering SIREN to fit the synthetic signals are
as follows. We deliver a SIREN MLP with 32 hidden fea-
tures and 3 hidden layers to fit the signals. We set ω for the
sinusoidal activation of the first layer for 1D signals as 10
and ω for the sinusoidal activation of the first layer for 2D
signals as 30. ω for the sinusoidal activation of the other
layer is set to 30.

For both two experiments, MSE loss and the Adam op-
timizer with a learning rate 1e − 3 are applied to optimize
the SIREN models. When the MSE loss is less than 0.05,
we think the model fits the signal successfully and report
the number of the convergence epoch. The experiments
are repeated 5 times and we finally report the mean and
std convergence step with respect to the number of bound-
aries in the spatial domain. As presented in Figure 1, the re-
sult shows that the curves align with the exponential curves
y = pN , where p = 1.0656 for 1D signals and p = 1.00815
for 2D signals. Therefore, we empirically demonstrate the
exponential-increase hypothesis in learning a single INR.

N=1 N=35 N=70

......

1 N 70

10 M 250

N1=2, N2=5,
M=10, N=27

N1=9, N2=15,
M=135, N=294

N1=25, N2=10,
M=250, N=535

......

Figure 10. Typical examples of the 1D and 2D synthetic signals
that we use to demonstrate exponential-increase hypothesis.

B. Complexity of dedicating smaller neural
networks

In this part, we show that with larger k, proposition 1 can
be generalized to the case of fitting each sub-domain with
smaller neural networks, whose complexity of fitting one
boundary is larger than p.

Proof. Since we dedicate smaller neural networks for
each sub-domain, we can assume the complexity of fit-
ting one boundary for each smaller neural network is
{p1, p2, ..., pk}, where pi > p. Then the total complexity
of parallelly fitting all sub-domain with separate neural net-
works is

pN1
1 + pN2

2 + ...+ pNk

k =

k∑
i=1

pNi
i . (10)

Defining N̂ = max(N1, N2, ..., Nk) and p̂ =
max(p1, p2, ..., pk), we hold inequations 11:∑k

i=1 p
Ni
i

p̂N̂
=

k∑
i=1

p̂Ni

p̂N̂
≤

k∑
i=1

1 = k (11)

Empirically, we should optimize each neural network
several times, so we have pNi ≥ 2, then the following in-
equation hold:

pN

p̂N̂
=

p(N1+N2+...+Nk)

p̂N̂
=

p

p̂

∏
Ni ̸=N̂

pNi ≥ p

p̂
·2k−1. (12)

As long as k is large enough so that p
p̂ ·2

k−1 > k, propo-
sition 1 is proved for smaller neural networks.

C. Formalization for PoS algorithm

The formalization of the PoS algorithm is presented
here:

Algorithm 1 Partition Based on Semantic Segmentation
Maps
Require: An image that needed to be partitioned, I; the

number of required sub-domains k
Ensure: The semantic segmentation map, M ;

1: Delivering Hierarchical Feature Selection algorithm on
I and obtaining initialized segmentation map Mi;

2: Delivering connected components algorithm to re-label
those unconnected parts on Mi;

3: while Number of sub-domain(Mi) >k do
4: Finding the sub-domain Ds in Mi which contains

smallest area of region;
5: Finding the sub-domain Dr who is the neighbor of

Ds and contains smallest area of region;
6: Changing the label of Ds to the label of Dr

7: end while
8: return Mi;

D. Partition reduces the high-frequency com-
ponents of the input signal.

In this part, we show that the partition helps to reduce
the high-frequency components that each MLP needs to fit
through Fourier Transform. We use PoG as an example but
it is clear that this conclusion can be generalized to PoS
partition.

Specifically, as shown in Figure 11, we apply 2D Fast
Fourier Transform [15] on a given image and shift the zero-
frequency components to the center of the plot. We also
apply the 2 × 2 partition on the input image and apply the
same Fourier Transform and center-shifting algorithm for
each sub-domain. We then plot the amplitude vs. frequency
for the x dimension while keeping the zero-frequency com-
ponents at the y dimension, and the amplitude vs. frequency
for the y dimension while keeping the zero-frequency com-
ponents at the x dimension. The experimental results show
that the low-frequency components get higher amplitude,
which meets the expectation that most information of sig-
nals is stored in the low-frequency components. We can also
observe that the amplitudes of frequency of all sub-parts are
decreased compared with the original image, especially the
high-frequency components. From this point of view, we
can also prove that our partition helps to improve the con-
vergence speed of learning INRs because it decreases the
high-frequency components each MLP needs to fit.

E. Detailed Experiments Setting for Learning
INRs

The SIREN [29] and the ReLU MLP with positional em-
bedding are implemented as follows:

• SIREN: we use the sinusoidal function as the activa-

2D Fourier
Transfrom

PoG partition

2D Fourier
Transfrom

0

0

0

0

0

0

0

0

0 0

0

sub0 sub1

sub2 sub3

Figure 11. Amplitude analysis of Fourier Transform on image and
its sub-parts. We can observe that partition significantly decreases
the amplitude of high-frequency components.

tion function for each layer (y = sin(ωx)), setting up
the ω for the first layer as 60 and the ω for the hidden
layers as 30.

• ReLU-MLP with positional embedding: given an input
x, we use a harmonic embedding layer to convert each
feature in x into a series of harmonic features. We set
up the number of harmonic functions as 60.

To maintain the same capacity of the implementation for
models with and without partition techniques, we decrease
the number of hidden features of models with partition tech-
niques while maintaining the same number of hidden layers.
The detailed parameter setting is presented in Table 3.

F. Experiments for different numbers of heads

In this section, we show the detailed ablation study for
the number of heads with our two partition algorithms (PoS
and PoG) on two architectures (ReLU MLP and SIREN
MLP). We randomly sample 20 images from the LSUN bed-
room dataset [43]. For each image, we partition it to n parts,
where n ∈ [2, 12), and we dedicate ReLU MLP/SIREN
MLP with 3 hidden layers but different hidden features to fit
each part. To maintain a close total capacity of all models,
we use smaller hidden features for models with more heads
and larger hidden features for models with fewer heads. The
detailed settings of parameters in all models are presented
in Table 4.

Table 3. Parameter table for all implemented models. All models contain 3 hidden layers.
Base Architecture #Hidden Features #Head #Total Parameters

SIREN 512 1 790017
SIREN w. partition 256 4 793604

ReLU MLPs 512 1 911873
ReLU MLPs w. partition 240 4 926404

Table 4. Parameter table for models with different heads. We maintain the close total capacity of all models by dedicating smaller hidden
features for models with more heads and larger hidden features for models with fewer heads. All heads contain 3 hidden layers.

SIREN-based architecture ReLU MLP-based architecture
heads hidden dim # parameters hidden dim # parameters

1 512 790017 512 911873
2 360 782642 352 915906
3 296 794763 282 922989
4 256 793604 240 926404
5 228 787745 210 918755
6 208 787494 188 912558
7 192 783559 172 916251
8 180 787688 158 908824
9 170 791019 148 917757
10 162 798670 140 931010
11 154 794497 130 908061
12 146 779652 124 918108

Specifically, for PoG we consider partitioning with re-
spect to height and width as two different cases, e.g. 1 × 2
and 2 × 1, 1 × 3 and 3 × 1, 1 × 4 and 4 × 1 are totally 6
different cases. As a result, when n ∈ [2, 12], PoS has a to-
tal of 11 different cases and PoG has a total of 14 cases. In
Figure 12, we show more cases for both the PoG algorithm
as well as PoS algorithm. We can observe that our PoS al-
gorithm that based on the greedy merging algorithm tends
to generate semantic segmentation maps with balanced area
distribution within each partition part.

In Figure 13, we report the PSNR values of optimiz-
ing SIREN-based models with 200 steps and ReLU MLP-
based modes with 1200 steps. When fitting ReLU-MLP-
based models with PoG partition rules, SIREN-based mod-
els with PoG partition rules, or SIREN-based models with
PoS partition rules, we find that models with more heads
tend to achieve higher PSNR values at fixed optimization
steps. This phenomenon meets our expectations because
the more partition heads we have, the fewer boundaries ex-
ist in the area for each head, and the faster convergence for
optimizing an MLP with enough capacity. We consider the
pixel-based image representation as a special case of our
implicit neural representation based on the partition, where
the number of partition heads increases to the number of to-
tal pixels. Under this condition, each head is represented
by a constant function. The heads in this special case only
need a few optimization steps.

When fitting ReLU-MLP-based models with PoS parti-
tion rules, we observe a lot of failed cases. Some models
with more partition heads converge to lower PSNR values

at fixed optimization steps. A typical example is shown in
Figure 14. We think this is due to the imbalanced partition
areas of the PoS method and the limited expressive power
of ReLU MLP. If we make an average distribution of the
limited capacity of ReLU MLP over all heads, the capac-
ity of a single ReLU MLP head is not enough to fit a large
area and is over-fitting for a small area. As the number of
heads increases, the difference between the largest area and
the smallest area will become larger, which ultimately leads
to the failure of fitting ReLU-MLP-based models with PoS
partition rules over too many heads. Indeed, we can alle-
viate this problem by adaptively allocating the capacity of
ReLU MLP heads according to the area they would fit.

G. More results of learning INRs.

In this part, we show that we can easily improve the con-
vergence speed of learning INRs for super-resolution im-
ages by dividing the whole image into more parts. In ad-
dition, we show that our algorithm can also speed up the
training of shape regression and NeRF.

Results for images from Flickr1024 dataset. As shown
in Figure 17, we choose an image with dimension 700 ×
1200 and an image with 700 × 1100 from Flickr1024
dataset. We apply models with 9 partitions heads (the num-
ber of hidden layers and the hidden features are the same
as the model with 9 heads presented in Table 4) to learn
INRs for both images (3 × 3 for PoG, and segmentation
maps with 9 heads for each image are shown in Figure 17).
We optimize the SIREN-based models for 1500 steps and

1×2 1×3 1×4

3×33×13×1

2×42×32×22×1

4×34×24×13×4

(a)

input 2 heads 3 heads 4 heads 5 heads 6 heads

7 heads 8 heads 9 heads 10 heads 11 heads 12 heads

input 2 heads 3 heads 4 heads 5 heads 6 heads

7 heads 8 heads 9 heads 10 heads 11 heads 12 heads

(b)

Figure 12. (a) The visual performance of PoG algorithm. We have total 14 cases if we choose n ∈ [2, 12]. (b) PoS algorithm performance
for two examples (index 7 and 18 in Figure 13). We can observe that our PoS algorithm can generate good partition masks with balanced
area distribution, which is suitable for training piecewise INRs parallelly.

ReLU-MLP-based models for 10000 steps, for the sake of
getting a good visual performance comparison.

From the optimization curves in Figure 17, we can find
that the results from the partition-based models have about
2.5−5 dB higher PSNR than the baseline models. From the
visual results, we can observe that the results reconstructed
from the baselines contain much more noise. And the base-
lines fail to reconstruct some parts of the images, e.g. the
color of the tree in the lower left corner of the first image
and the color of the door in the second image.

Less running time and memory consumption for our
partition-based models. We also report the total running
time and memory consumption of our partition-based mod-

els and the baseline models on the two Flickr1024 images
described before. The results are presented in Table 5. It
is evident that our partition-based models have significantly
reduced running time and GPU memory consumption com-
pared to the baseline models while having the same capac-
ity. This observation demonstrates that our partition tech-
niques not only accelerate the learning process of INRs al-
gorithmically but also in practical terms.

Scale to 8000 × 8000 image. Same as presented
in ACORN[9], we present an experiment to fit a dwarf
planet Pluto image with 8000 × 8000 dimension. Please
note that rather than making a performance comparison
with ACRON[9], our target is to show that based on the

（a）ReLU MLP + PoG （b）SIREN MLP + PoG

（c）ReLU MLP + PoS （d）SIREN MLP + PoS
Figure 13. Fixed optimization step performance of models with different heads in 20 LSUN samples. The x-axis denotes which image we
are sampling, the y-axis denotes the PSNR for models, and the color denotes the number of heads, which changes from blue to red as the
number of heads increases. In both the two architectures and two partition methods, we find that in most samples, red points are mainly
concentrated on the top while blue points are mainly concentrated on the bottom. This phenomenon indicates that models with more heads
tend to achieve higher PSNR with fixed optimization steps.

(a) (b)

Figure 14. A failed case of ReLU-MLP-based models with PoS partition method. (a) The PoS result with n heads, where n ∈ [2, 12]. As
the number of partition heads increases, the partition area would become more and more imbalanced. When n = 12, the number of pixels
in the largest area is more than 30 times of the number of pixels in the smallest area. (b) In this case, ReLU-MLP-based models with the
PoS partition method with more heads fail to achieve higher PSNR values.

Table 5. Running time and memory consumption for our partition-based model and the baseline models with the same parameter capacity.
We optimize the SIREN-based models for 1500 steps and ReLU-MLP-based models for 10000 steps.

Image size Model Time (min) Memory (GB) Model Time (min) Memory Cost(GB)

700*1200
SIREN 5.7 18.9 ReLU MLP 32.1 15.8

SIREN PoS#9 2.5 7.6 ReLU MLP PoS#9 20.1 6.5
SIREN PoG#9 2.9 7.2 ReLU MLP PoG#9 20.3 5.8

700*1100
SIREN 5.2 17.5 ReLU MLP 29.5 14.7

SIREN PoS#9 2.7 7.0 ReLU MLP PoS#9 17.5 6.2
SIREN PoG#9 2.8 6.7 ReLU MLP PoG#9 17.8 5.7

dwarf planet Pluto

Figure 15. The left image is the dwarf planet Pluto with 8000 ×
8000 pixels. The fitting experiment results on the right show that
our partition methods can also speed up the convergence rate of
learning INRs for extremely large images.

exponential-increase hypothesis, simply partitioning the in-
put domain and delivering smaller MLPs for each region
can speed up the convergence rate of fitting an extremely
large image. The fast training and inference efficiency of
ACORN should give the credit to its hybrid multiscale ar-
chitecture but not the partition strategy.

The experimental settings are as follows. Due to the
large resolution of the dwarf planet Pluto image, it is im-
possible to input all pixels into the models within one batch,
like the training process in the experiments presented in sec-
tion 5.1. Therefore, we use the mini-batch training strategy
to train the models. More specifically, within a single batch,
500,000 pixels are sampled randomly to train the models.
Since the dwarf planet Pluto images does not have too many
boundaries, we partition it into 4 sub-regions and dedicate
4 smaller SIREN MLPs with 758 hidden features and 4
hidden layers to fit it. The performances of our partition-
based models are compared with the baseline single SIREN
MLP with 1536 hidden features and 4 hidden layers, which
has the same capacity as our partition-based models. Other
hyper-parameters are the same as the experiments in sec-
tion 5.1.

We report the fitting PSNR with respect to the training
epoch as well as training time in Figure 15. The results
show that the PSNR values at the same step or training
time for our partition-based models are much higher than
the baseline models. Therefore, our partition methods work

(b) Shape Regression on Thai Statue

(c) NeRF on Fern Scene

epoch

Time (min)epoch
1e4

PS
N

R

PS
N

R

(a) Thai Statue and Fern Scene

Figure 16. We apply partition-based INR learning algorithm on
Thai Statue (point cloud) and Fern Scene (NeRF). The results
show that our algorithm can speed up the learning for 3D data.

well for extremely large images.
Scale to Shape Regression and NeRF. To demonstrate

the performance of partition, we also test our algorithm
in 3D data, including shape regression on Thai Statue and
NeRF on Fern Scene, as presented in Figure 16 (a).

To regress the shape on Thai Statue, we fol-
low SIREN [29] and sample on surface coords and
off surface coords from Thai Statue point cloud. The
signed distance functions (SDFs) of on surface coords are
assigned to 0 while the SDFs of off surface coords are as-
signed to -1. We apply SIREN and SIREN with PoG with
4 heads to fit the data. The partition mask is based on grid
that has boundaries on the mean of the x dimension and y
dimension. We show the training curve in Figure 16 (b),
which shows that partition leads shape regression to lower
errors and smaller oscillation.

For NeRF on Fern Scene, we also compare the baseline
NeRF [12] with our partition-based NeRF. More specifi-
cally, we apply a partition mask with 2 × 2 regular grids
that have boundaries on the mean of the x dimension and
y dimension. The results show that our partition speeds up
the training of NeRF in terms of training time but not train-
ing epoch. We argue that the phenomenon occurs because
the calculation of each pixel value requires the evaluation

Table 6. Times of best 3 Views performance on 300 images for all models.
Architectures SIRENG

G SIRENS
S SIRENS

G SIRENG SIRENS SIREN SIRENG
S

highest PSNR 273 17 0 0 0 0 0

Table 7. Mean SSIM and LPIPS for LSUN test images.
Methods SSIM↑ LPIPS↓ Methods SSIM↑ LPIPS ↓
SIREN 0.744 0.343 ReLU 0.415 0.806
SIREN-PoG 0.839 0.233 ReLU-PoG 0.430 0.743
SIREN-PoS 0.862 0.197 ReLU-PoS 0.461 0.660

of coordinates that are located in different partition domain,
which makes the partition mask blurred.

H. More results and discussion for Learning-
to-learn INRs

We explore which model achieves the highest 3 Views
PSNR value on all 300 images and present the results in Ta-
ble 6. We find that the SIRENG

G model achieves best perfor-
mance in most cases, while SIRENS

S achieves best perfor-
mance in the rest cases. To some extent, this result violates
our expectations since the PoS has a better performance
than PoG when training an INR for a single image. As dis-
cussed in section 5.2, PoS could be considered as a more
general choice than PoG. We think the reason why PoS fails
to get better performance than PoG on the learning-to-learn
INRs framework is that training a good initialized weight
that is suitable for the arbitrary shape of sub-domain (PoS)
is much harder than training a good initialized weight that
is suitable for the regular grid (PoG).

We present more examples that our partition-based mod-
els defeat the baseline SIREN in Figure 18, 19 and 20. We
can see that our partition-based models generate less noise
than the baseline models. And the partition-based mod-
els also generate sharper discontinuous boundaries between
two separate objects in the scene, which further proves our
Proposition 1.

In Figure 21 and 22, we also show two more examples of
the detailed fine-tuning process of models with a different
setting. We can observe that the model trained with PoG
and fine-tuning with PoS fails but the model trained with
PoS and fine-tuning with PoG achieves good performance.
This phenomenon gives evidence that PoS is more flexible
than PoG.

I. More quantitative results

In this section, we provide the additional quantitative
results in terms of two more metrices, SSIM [38] and
LPIPS [45]. Distinguished from PSNR that only measures
absolute error, SSIM is a perception-based model that con-
siders image degradation as perceived change in structural
information while LPIPS delivers deep neural networks to

Table 8. Mean SSIM and LPIPS with 3 views for learning-to-learn INRs
methods. For short, we rewrite G as the PoG partition method and S as
the PoS partition method. We mark a superscript G/S if we apply the cor-
responding method in the training stage and mark a subscript G/S if we
apply the cor- responding method in the fine-tuning stage

Setting SSIM ↑ LPIPS ↓ Setting SSIM ↑ LPIPS ↓
SIREN 0.72 0.46 -
SIRENG 0.75 0.42 SIRENS 0.76 0.36
SIRENG

G 0.79 0.33 SIRENS
S 0.79 0.32

SIRENS
G 0.78 0.36 SIRENG

S 0.64 0.44

provide an emergent embedding which agrees well with hu-
mans.

Table 7 provides supplemental results for Table 1. The
result agrees well with Table 1 and shows that our partition
indeed leads learning INRs methods to better reconstruc-
tion performance from the human’s perception. Table 8 pro-
vides supplemental results for Table 2. We can observe that
the models that are both trained and inferred with our par-
tition methods achieve the best performance, which meets
the conclusion in Table 2.

Ground Truth

PoS#9 Segmentation

Optimization Curves for
ReLU-MLP-Based Models

Optimization Curves for
SIREN-Based Models

ReLU-MLP Results ReLU-MLP with PoS#9 Results ReLU-MLP with PoG#9 Results

SIREN Results SIREN with PoS#9 Results SIREN with PoG#9 Results

Ground Truth Optimization Curves for
ReLU-MLP-Based Models

ReLU-MLP Results ReLU-MLP with PoS#9 Results ReLU-MLP with PoG#9 Results

PoS#9 Segmentation Optimization Curves for
SIREN-Based Models

SIREN Results SIREN with PoS#9 Results SIREN with PoG#9 Results

Figure 17. Performance of our partition-based models in two examples of super-resolution images. We present the ground truth, PoS
segmentation maps with 9 parts, the optimization curves as well as the reconstruction results of all models (10000 steps for ReLU-MLP-
based models and 1500 steps for SIREN-based models). We observe that our partition-based models lead to better reconstruction results
(about 2.5 to 5 dB higher PSNR than baselines). We can also observe that the baselines fail to reconstruct the color of the tree in the lower
left corner of the first image and the color of the door in the second image. All models have the same capacity.

SIREN SIREN

Ground Truth SIREN

Figure 18. An example of performance comparison of 3 Views results of the baseline model (SIREN) and our partition-based models. Our
partition-based model would generate better results that contain less noise as well as sharper boundaries.

SIREN SIREN

SIRENGround Truth

Figure 19. Another example of performance comparison of 3 Views results of the baseline model (SIREN) and our partition-based models.
Our partition-based model would generate better results that contain less noise as well as sharper boundaries.

Ground Truth SIREN SIREN SIREN

Figure 20. More examples of performance comparison of 3 Views results of baseline model and our partition-based models. Our partition-
based model would generate less noise as well as sharper boundaries.

SI
R

EN
SI

R
EN

SI
R

EN
SI

R
E

N
SI

R
EN

Initial weight 1 View 2 View 3 View

Ground Truth

Figure 21. Example 1 of performance comparison of results of models with different training and fine-tuning mechanisms. We can observe
that the model trained with PoG and fine-tuning with PoS fails but the model trained with PoS and fine-tuning with PoG achieves good
performance.

Ground Truth

Initial weight 1 View 2 View 3 View

SI
R

EN
SI

R
EN

SI
R

EN
SI

R
E

N
SI

R
EN

Figure 22. Example 2 of performance comparison of results of models with different training and fine-tuning mechanisms. We can observe
that the model trained with PoG and fine-tuning with PoS fails but the model trained with PoS and fine-tuning with PoG achieves good
performance.

