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Table 1: Performance of sparse point queries with different
point-query stride K.

Stride K 16 10 8 4

SH PartA MAE 62.19 55.03 53.59 54.16

A. Analysis on the Point-Query Quadtree
In this section, we first introduce how we select the ini-

tial point-query stride K. Then, we analyze the depth of the
quadtree. In addition, we also give a more detailed discus-
sion on the quadtree loss in Eq. (4).

A.1. Selecting the Initial Point-Query Stride K

We consider two criteria when selecting the initial point-
query stride K: i) It should achieve moderate performance;
ii) Its value should fall into an appropriate range, i.e., nei-
ther too large nor too small. Therefore, we first investigate
the performance of sparse point queries with different stride
K. In case of misunderstanding, we remark that here
we do not use the quadtree, but only span sparse point
queries across an image.

As shown in Table 1, one can observe that: i) With
the stride reduced, the MAE first decreases and then rises.
The performance tends to be stable with K is around 8,
which suggests that the model is relatively insensitive to K
within a certain interval; ii) A large point-query stride, e.g.,
K = 16, yields inferior results. This is reasonable because
too few points lead to systematic underestimation. For ex-
ample, when dealing with congested regions, the number
of point queries is not sufficient to cover all persons. As a
result, the MAE surges in such scenarios, thus affecting the
overall MAE. Note that this result has nothing to do with ro-
bustness, but the natural pitfall of using a large point-query
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Table 2: Statistics of the maximum count of existing
datasets inside a 256 × 256 patch. The statistics are com-
puted on training images.

Dataset SH PartA UCF-QNRF JHU-Crowd NWPU

Maximum
Count 973 1350 1204 974

stride; iii) A small point-query stride, e.g., K = 4, does not
bring further improvement. This could attribute to the am-
biguity during bipartite matching. To be specific, a ground-
truth point may correspond to several similar point queries
on sparse regions, which impedes the model to discriminate
valid points. In addition, a small point-query stride also re-
sults in a large computational cost.

To achieve a balance between performance and compu-
tational cost, we set the initial point-query stride K = 8.

A.2. The Depth of the Quadtree

We analyze the depth of the point-query quadtree from
two perspectives, including the statistics perspective and
the distance perspective. The former determines the depth
of the quadtree by analyzing the statistics of crowd, while
the latter inspects the distance distribution between ground-
truth points and point queries. Both of them suggest that
splitting once is generally sufficient for crowd prediction.

Statistics Perspective. Recall that we crop 256 × 256
patches from the input images for training. An intuitive way
to determine the depth of the quadtree is to obtain the statis-
tics of crowd inside a 256× 256 patch. In another word, we
should ensure that the number of point queries is larger than
the maximum number of persons in a patch.

To acquire such statistics, we use a sliding window to
obtain all possible 256 × 256 patches inside an image, and
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Stride K=8 Stride K=4

Figure 1: Visualization of the matched querying points. Red and yellow points are ground-truth points and matched
querying points, respectively. Best viewed with zoom in.

Table 3: Statistics of D on ShanghaiTech PartA and UCF-
QNRF datasets, where D′ = {di|di > K, i ∈ {1, . . . , N}.

ID Dataset Stride K
Quantile of D |D′|

|D|50% 90% 100%

B1 SH PartA 8 3.3 5.2 84.5 4.5%
B2 4 1.6 2.3 5.9 0.022%

B3 UCF-QNRF 8 3.4 5.9 346.9 7.0 %
B4 4 1.6 2.3 16.1 0.074%

compute the maximum count among all patches. The statis-
tics of existing datasets are listed in Table 2. UCF-QNRF
dataset has the highest crowd density, with a maximum
count of 1350. For comparison, using a stride of 8 could
produce at most 1024 points. After one-time splitting, the
maximum number of point queries could reach 4096, which
is significantly larger than 1350. Therefore, splitting once
is generally sufficient for crowd prediction.

Distance Perspective. Here we analyze the distance be-
tween ground-truth points and point queries. For each im-
age, we first span the querying points across it with stride
K, and then compute the bipartite matching between these
querying points and point annotations. This results in a set
of matched points pairs S = {(pi,qi)|i ∈ {1, . . . , N}},
where pi is the ith point annotation, qi is the matched
querying point, and N is the total number of point anno-
tations. Based on S, we further obtain a set of matched dis-
tances D = {di|i ∈ {1, . . . , N}}, where di is the Euclidean
distance between pi and qi. Table 3 shows the statistics of
D on two crowd counting datasets.

Take B1 for example, when the stride of querying points
equals 8 (K = 8), we observe that 90% of the matched
distance in D is less than 5.2 while the maximum matched
distance is 84.5. In addition, 4.5% of the matched distance
in D is larger than 8. After splitting (B2), i.e., stride K
is reduced from 8 to 4, only 0.022% of the matched dis-
tance in D is larger than 4 while the maximum matched
distance is 5.9. Similarly, for UCF-QNRF, only 0.074% of

2



Figure 2: Example images that contain dense regions.
Yellow boxes highlight the dense regions.

the matched distance is larger than 4 after splitting. This
suggests that splitting once is generally sufficient to deal
with crowd estimation. Fig. 1 shows some examples of the
matched querying points. One can observe:

• For sparse regions, K= 8 is sufficient, i.e., the
quadtree is unnecessary to split;

• For congested regions, some matched querying points
are far from ground-truth points when K = 8. After
splitting (K = 4), the matched querying points are
sufficiently close to ground-truth points.

To summarize, the above analysis both conclude that
splitting once is generally sufficient to deal with crowd pre-
diction when the initial point-query stride is set to 8.

A.3. Discussion on the Quadtree Loss in Eq. (4)

For convenience, we post Eq. (4) here:

ℓsplit = 1(dense)(1−max(Ms)) + min(Ms) , (1)

where Ms is the split map, and 1(dense) equals 1 if the
input image has dense regions, otherwise 0. We consider an
image has dense regions if its crowd density is high. The
crowd density Cden is defined by the average nearest dis-
tance between ground-truth points. Given a set of ground-
truth points Y = {yi}Mi=1, Cden is computed as:

Cden =
1

M

∑
i

min
j∈{1,...,M},j ̸=i

d(yi,yj) , (2)

where d(·, ·) denotes Euclidean distance. An image is con-
sidered to have dense regions if Cden is smaller than 2K,
where K is the point-query stride. Fig. 2 shows some ex-
ample images that contain dense regions.

One may consider that whether the definition of dense
regions has significant impact on the quadtree splitter. Inter-
estingly, we found that the definition is not that important.
Eq. (4) works even if we do not define dense regions. To be
specific, we can simply eliminate the indicator function of
dense regions and rewrite Eq. (4) as follows:

ℓsplit = (1−max(Ms)) + min(Ms). (3)

Although Eq. (3) works in an unsupervised manner, the
quadtree splitter can still output reasonable split maps and

RectWin-SA

V K Q

Add & Norm

FFN

Add & Norm

Encoder

𝐿𝑒 ×

RectWin-SA

V K Q

Add & Norm

FFN

Add & Norm

Decoder

𝐿𝑑 ×

V K Q

RectWin-CA

Add & Norm

Figure 3: Detailed architecture of transformer encoder
and decoder.

the performance of Eq. (3) is similar to Eq. (4). This phe-
nomenon can attribute to the weak supervision of Eq. (3),
as it only samples one element in Ms when computing the
loss of dense and sparse regions. Such weak supervision
enables the model to discriminate dense regions without ex-
ternal guidance. Given that Eq. (3) can be computed within
a batch instead of one sample, the first term is often valid
because the training images often contain dense regions.
Therefore, the quadtree splitter can still be correctly trained.

B. Detailed Architecture of Transformer
Fig. 3 shows the detailed architecture of transformer en-

coder and decoder.

Encoder. The encoder attention is computed as:

x̂l = LN(RectWin-SA(xl−1) + xl−1) ,

xl = LN(FFN(x̂l) + x̂l) , (4)

where xl−1 and xl are the output features of the encoder
layer l − 1 and the layer l, respectively. Note that x0 is
initialized with CNN feature F . RectWin-SA, FFN, and
LN denote rectangle window self-attention, feed-forward
network, and layer normalization, respectively. In particu-
lar, feed-forward network consists of two MLP layers with
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ReLU activation. The input, hidden, and output dimension
of feed-forward network is 256, 512, and 256. Regarding
rectangle window self-attention, the input dimension and
number of head are set to 256 and 8. In addition, the num-
ber of layer Le is set to 4. For the first two layer, we use a
rectangle window with a size of se × rese, where se = 16
and re = 2. For the last two layers, we adopt a smaller
rectangle window with a size of 1

2se ×
1
2rese.

Decoder. The decoder attention is computed as:

ẑl = LN(RectWin-SA(zl−1) + zl−1) ,

ẑl = LN(RectWin-CA(ẑl,xN ) + ẑl) ,

zl = LN(FFN(ẑl) + ẑl) , (5)

where xN is the final output of the transformer encoder,
zl−1 and zl are the output features of the decoder layer l −
1 and the layer l, respectively. Note that z0 is initialized
with the representation of point queries. RectWin-SA and
RectWin-CA denote the rectangle window self-attention
and the rectangle window cross-attention, respectively. The
number of layer Ld is set to 2. The configurations of feed-
forward network and attention are the same as transformer
encoder.

Recall that we adopt a point-query quadtree with a depth
of 2. For sparse point queries, the rectangle window is with
a size of 1

2se ×
1
2rese. For dense point queries, we use a

smaller window with a size of 1
4se ×

1
4rese.

Bipartite Matching. The output of PET is a set of can-
didate crowd Q = {qi}Ni=1. We optimize the network
based on the bipartite matching between these predictions
and ground truths. Let Y = {yi}Mi=1 denote the set of
ground-truth points, we define the cost matrix between Q
and Y as follows:

Cmatch(Q,Y) = (−ci +α∥qi −yj∥2)i∈{1,...,N},j∈{1,...,M},
(6)

where ci is the classification probability, ∥·∥ denotes ℓ2
distance, α is a balancing factor, and N > M . Eq. (6)
jointly considers the classification and localization infor-
mation, aiming to achieve optimal matching. The above
matching process will output a matched index σ (Line 505
in the paper). Note that α is set to 0.05 during training.

C. More Quantitative Results

Results on the UCF CC 50 Dataset. To further demon-
strate the effectiveness of our approach on dense scenes, we
conduct experiments on the UCF CC 50 dataset. We follow
previous work to perform a 5-fold evaluation. As shown in
Table 4, our PET significantly outperforms state-of-the-art
methods, achieving an MAE of 159.96 and MSE of 223.79.
This supports the adaption of PET on dense scenes.

Table 4: Crowd counting results on the UCF CC 50 dataset.

Method Venue MAE MSE

CSRNet [4] CVPR’18 266.1 397.5
CAN [5] CVPR’19 212.2 243.7
BL+ [6] ICCV’19 229.3 308.2
S-DCNet [9] ICCV’19 204.2 301.3
DM-Count [8] NeurIPS’20 211.0 291.5
ASNet [3] CVPR’20 174.84 251.63
P2PNet [7] ICCV’21 172.72 256.18
GauNet+CSRNet [2] CVPR’22 215.4 296.4

PET - Ours - 159.96 223.79

Table 5: Results of crowd distribution generalization. The
model is trained on ShanghaiTech PartB and tested on
ShanghaiTech PartA.

Method D2CNet [1] P2PNet [7] PET (Ours)

MAE / MSE 164.5 / 286.4 144.3 / 251.5 132.4 / 245.7

Table 6: Impact of different encoder windows. re stands for
aspect ratio.

Encoder Window re = 2 re = 3 re = 4

SH PartA MAE 49.34 49.09 49.15

Crowd distribution generalization. To justify the gener-
alization capability of our approach, we train the model on
ShanghaiTech PartB and test it on ShanghaiTech PartA. The
idea is to investigate whether the model can transfer from
low crowd density data to high crowd density data. Table 5
reports the results. We observe that PET exhibits good gen-
eralization capability, outperforming existing localization-
based methods by a considerable margin.

Effect of Encoder Window. Here we investigate the ef-
fect of different encoder windows by adjusting aspect ra-
tios re. The results are shown in Table 6. One can observe
that PET is insensitive to the configuration of encoder win-
dow. Although using a larger aspect ratio (e.g., re = 3) could
slightly improve the performance, it will increase computa-
tional cost. Therefore, we simply set re as 2.

D. Qualitative Results of Model Predictions
Here we show some qualitative results of model pre-

dictions on ShanghaiTech PartA (Fig. 4) and UCF-QNRF
datasets (Fig. 5). The left column shows the ground-truth
points, while the right column shows the model predictions,
in conjunction with the split map.
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Ground-truth Predictions

Figure 4: Qualitative results of model predictions on the ShanghaiTech PartA dataset. Red regions denote congested
regions that require the quadtree to split.
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Ground-truth Predictions

Figure 5: Qualitative results of model predictions on the UCF-QNRF dataset. Red regions denote congested regions that
require the quadtree to split.

6



E. Qualitative Results of Attention Maps
Fig. 6 and Fig. 7 show more qualitative results of atten-

tion maps. We can observe that a higher attention value
occurs in similar crowd.

Figure 6: Qualitative results of encoder attention maps.
Red points in the original images denote reference points.

Figure 7: Qualitative results of decoder attention maps.
Red points in the original images denote point queries.
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