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In this Supplemental, we first provide more quantitative
comparison and ablation experiments in Sec. 1 and Sec. 2,
respectively. We then show more visual results and further
comparisons in Sec. 3. The splits of the four benchmark
datasets are detailed in Sec. 4.

1. Addition Quantitative Comparison
Performance evaluation of different methods. Table 1
provides a comprehensive performance evaluation of our
proposed Step-1 and Step-2, as well as several methods
adapted from other tasks, on four benchmark datasets. In
particular, GroupViT† [13] is fine-tuned on the training
sets and subsequently validated on the test sets. Regarding
Maskclip†[14] and CLIP-ES†[7], we utilize their output as
supervision signals to supervise the output of our network
in Step-1 via a cross-entropy loss. Other compared methods
[9, 2, 11] employ the similar training procedure from their
respective repositories.

Our proposed method in Step-1 outperforms the afore-
mentioned methods by large margins, as demonstrated by
the significant performance improvements on PointIt met-
ric. Additionally, the segmentation performance is further
improved after the second training step, where the pseudo-
labels generated by Step-1 are utilized as supervision.

Comparison of the computational cost. We compare the
parameters, MACs of different methods, and our framework
(Steps 1 and 2) in Tab. 2. The computational cost of our
proposed method is lower compared with that of AMR. The
discrepancy in the computational cost can be primarily at-
tributed to the additional compensation branch utilized by
AMR, which is designed to identify and extract more rel-
evant regions. Besides, the MACs of GbS and WWbL are
much higher than ours. This is mainly because they employ
a heavy segmentation decoder, but ours (Step-1) can di-
rectly up-sample and conduct thresholding on the response
maps to obtain the initial results. In addition, although the
parameters of their models are smaller, our performance is
significantly higher than theirs. We also show the inference

speeds of different methods. Compared with Step-1 of our
framework, Step-2 introduces the segmentation decoder and
non-local attention block [12], resulting in the increase of
inference time. Although the speed of WWbL is slightly
faster than our Step-1 (15ms vs 17ms), its performance is
much lower than ours.

2. Addition Ablation Studies
Different image encoders in Step-1. In Tab. 3, we compare
the performances of different image encoders with different
sources of weights, including ResNet-50 [5] and Swin-B [8]
pretrained on ImageNet [3], and ResNet-50/101 pretrained
on CLIP [10]. The image encoder with CLIP weights can
obtain better performances due to its zero-shot transfer abil-
ity. Unless otherwise specified, we adopt ResNet-50 with
CLIP weights as our default image encoder in Step-1 so as
to reduce the model complexity. Even when we employ
the pre-trained weights from ImageNet to initialize our im-
age encoder, our performances still surpass WWbL [11] by
large margins (i.e., PointIt: 61.83 vs 45.28; IoU: 24.86 vs
21.75) on the RefCOCOg (U) val set. These comparisons
and results demonstrate that the effectiveness of the pro-
posed framework comes from the unique problem formu-
lation and key designs (e.g., the text-to-image optimization
process and the calibration method), rather than the stronger
backbones or weights.

Different values for hidden dimension Cd in Step-1.
When we gradually increase Cd by a factor of 2 starting
from 128, the performance grows accordingly and peaks at
1024, as shown in Tab. 4. This shows that our framework
does not simply rely on more learning parameters to im-
prove its performance.

The coefficient λ of classification loss Lcls in Step-1. The
final loss that we use in Step-1 includes two items, i.e., clas-
sification loss Lcls and calibration loss Lcal. To avoid over-
tuning these hyper-parameters, the coefficient for Lcal is set
as 1, and we only adjust the coefficient for Lcls, i.e., λ. All



Metric Method Backbone
ReferIt RefCOCO RefCOCO+ RefCOCOg

test val testA testB val testA testB val (G) val (U) test (U)

PointIt

AMR† [9] ResNet-50 25.78 22.99 12.94 36.27 24.19 14.62 38.15 37.25 35.95 36.99
MaskCLIP† [14] ResNet-50 28.89 20.54 24.66 18.67 28.54 32.94 22.62 23.60 22.55 22.72
GroupViT† [13] GroupViT 40.09 33.17 34.15 32.74 33.99 33.48 34.20 40.17 40.79 40.39
CLIP-ES† [7] ViT-Base 60.50 48.27 58.34 36.96 53.22 62.98 40.52 59.40 55.82 54.93
GbS† [2] VGG16 48.12 35.31 33.77 36.82 33.87 33.00 36.75 36.63 38.57 39.16
WWbL† [11] VGG16 57.40 38.43 38.77 37.45 44.09 43.33 44.36 42.29 45.28 43.14
Ours (Step-1) ResNet-50 72.56 60.95 71.12 49.64 48.50 49.42 47.25 65.80 65.03 66.08
Ours (Step-2) ResNet-50 74.94 60.86 70.39 49.72 60.63 68.72 50.93 67.61 68.55 68.40

Table 1. Quantitative comparison of different methods using text description labels on four RIS benchmarks. (G) and (U) denote the Google
and UMD dataset partitions of RefCOCOg. † indicates the methods adapted from other tasks.

Model Params. MACs Speed IoU PointIt PointM

AMR† [9] 156.87Mb 27.88G 72ms 18.98 25.78 7.12
GbS† [2] 48.41Mb 34.99G 55ms 14.21 48.12 30.30
WWbL† [11] 81.30Mb 67.20G 15ms 28.01 56.09 42.84
Ours (Step-1) 115.66Mb 12.40G 17ms 33.33 72.56 61.70
Ours (Step-2) 142.09Mb 21.26G 22ms 44.57 74.94 67.00

Table 2. Comparison of computation costs of the methods adapted
from other tasks with our framework (Step-1 and Step-2) on the
ReferIt test set. The MACs are tested on 320×320 resolution. The
inference speeds are based on one GTX1080Ti with a batch size
of 1. † indicates methods re-trained by us.

Weights Encoders
Train Val

IoU PointIt IoU PointIt

ImageNet [3]
ResNet-50 25.72 62.05 24.86 61.83
Swin-B 24.04 65.21 24.32 64.44

CLIP [10]
ResNet-50 27.81 66.98 26.62 65.07
ResNet-101 27.62 68.02 27.47 67.28

Table 3. Comparison of different image encoders on the Ref-
COCOg (U) training and val sets in Step-1. Swin-B denotes the
base version of the Swin Transformer. The weights refer to the
different sources of the pre-trained model parameters.

experiments are conducted with the same experimental set-
tings as the final framework. As shown in Tab. 5, we test
different values of λ (from 1 to 10), and the best perfor-
mance is achieved when λ = 5. Meanwhile, the variances
of the IoU and PointIt performances in these experiments
are small (only 0.1 and 0.7, respectively), which also indi-
cates that the proposed framework is stable and insensitive
to the loss ratio.

Different image encoders in Step-2. As shown in Tab. 6,
using Swin-B as the image encoder yields better results than
using ResNet-50, but at the costs of higher complexity and
computations (e.g., FLOPs: 38.22G vs 21.63G; speed 1:

1The inference time for one pair of image and query.

128 256 512 1024 2048

IoU 26.42 26.87 27.35 27.81 27.65
PointIt 63.40 64.77 65.24 66.98 66.60
PointM 49.55 51.31 52.13 53.69 53.45

Table 4. Comparison of using different values for hidden dimen-
sion Cd, on RefCOCOg (U) train set.

30ms vs 22ms). Even though we can achieve a better RIS
performance by using a stronger visual encoder, we adopt
ResNet-50 as our default visual encoder in Step-2 to balance
the trade-off between the model’s complexity and accuracy.

The influence of refinement in Step-2. In Tab. 7, we also
present the comparison of IoU performances with and with-
out the refinement operation [1] on the training sets of four
datasets, as we use it to generate better pseudo-labels for
the training process of Step-2. We can clearly see that the
refinement operation (see 2rd-row in Tab. 7) can indeed en-
hance the quality of the responses. Besides, the higher the
quality of the response maps (i.e., the results of not having
this refinement as shown in row-1), the higher the perfor-
mance gains of the refinement (i.e., row-2).

3. More Visualization Results
Qualitative Results. More qualitative results of our frame-
work are shown in Fig. 1. Our framework can properly
localize and segment different kinds of sample targets, in-
cluding long and complex sentences (e.g., Images (a), (c)
and (g)), appearance descriptions (e.g., “green”, “blue” and
“red” in Images (b) and (j)), spatial positions (e.g., “top”,
“left” and “center” in Images (n), (u) and (v)) and mutual
relations (e.g., “sitting on” Image (h)).

Comparison with WSGs. WWbL usually misidentifies
other regions as target regions, and it is difficult to reduce
the influence of noisy regions. As shown in Table 1, we
provide more comparisons of IoU and PointIt performances
with GbS and WWbL on different benchmark datasets. In



λ 1 2 3 4 5 6 7 8 9 10

IoU 26.92 27.56 27.80 27.70 27.81 27.40 27.43 27.27 27.06 26.97
PointIt 63.93 65.89 66.29 66.72 66.98 66.18 66.84 66.83 66.56 66.53
PointM 51.74 53.18 53.55 53.58 53.69 52.87 53.17 53.06 52.76 52.52

Table 5. Effect of using different values for λ in the classification loss (Lcls). All experiments are performed on the RefCOCOg (U)
training set using Step-1 of our framework. We set λ=5, by default.

Encoders
Train Val

IoU PointIt PointM IoU PointIt PointM
ResNet-50 36.25 66.82 57.59 36.19 68.53 58.84
Swin-B 37.01 67.80 59.41 36.80 67.53 58.70

Table 6. Comparison of different image encoders on the Ref-
COCOg (U) training and val sets in Step-2. Swin-B and ResNet-
50 use the pre-trained weights from ImageNet [3] and CLIP [10],
respectively.

ReferIt RefCOCO RefCOCO+
RefCOCOg

Google UMD

PRMS 33.30 26.63 26.05 27.17 27.92
PRMS +R 43.26 31.33 30.86 34.99 35.66

Table 7. Quantitative comparison without (i.e., PRMS) and with
(i.e., PRMS + R) the refinement operation [1], performed using
different training sets in Step-2 on the IoU metric. The refinement
operation is built on PRMS, and the better the result of PRMS, the
better the result after the refinement.

Fig. 2, we also show predicted results of WWbL [11] and
our framework. Both the quantitative and qualitative results
reveal that WWbL is less effectiveness nor applicable in
handling the RIS task. For the example shown in the 1st
row, the query is “a man in grey”. It locates the woman
(noises) as one of the target regions. In contrast, our frame-
work optimizes a text-to-image response process, which can
continuously adjust the locations and regions of the initial
response map, instead of being fixed as in WWbL. Besides,
our calibration method also utilizes negative samples (such
as “woman on the right”, “a woman holding flowers”, and
“elephant in a fenced area behind a woman”) to suppress
these noisy regions that are unrelated to the referring ex-
pression.

4. Dataset Details
RefCOCO. It is collected in an interactive game inter-

face [6], and divided into training, val, testA, and testB
sets, including 120,624, 10,834, 5,657, and 5,095 samples,
respectively. Each image in this dataset has multiple ob-
jects of the same category. RefCOCO+. It is also split
into training, val, testA, and testB datasets, which have
120,191, 10,758, 5,726, and 4,889 samples, respectively.

RefCOCOg. It has two partitions: Google and UMD par-
titions. The former includes 85,474 training samples and
9,536 val samples. The latter contains 80,512 training sam-
ples, 4,896 val samples and 9,602 test samples. The average
length of expressions in this dataset is 8.4 words. ReferIt. It
is collected from IAPR TC-12 [4], and divided into training
(59,976 samples) and test (60,105 samples) sets.
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Image (a) “a rose cup with a handle
containing some black tea”

“green broccoli on a
plate of food” Image (b) “a woman in a red dress” “a woman in a green and

blue striped shirt”

Image (c)
“a woman in a black

sweater preparing
to eat”

“little girl with blond hair
wearing a blue dress

looking down”
Image (d) “a blue coffed mug with

old taos guesthouse on it”
“a glass of juice

on the table”

Image (e) “a men in brown jacket” Image (f) “a bowl of sesame” Image (g)
“the bowl with a spoon
sticking out of it with
brown frosting in it”

Image (h) “a beige sofa sitting
on a green carpet” Image (i) “hp computer lid” Image (j) “a red umbrella”

Image (k) “broccoli on a table
plate to potatoes” Image (l) “the brown couch

on the left” Image (m) “a man dressed in all black
with a black backpack”

Image (n) “sky at the top” Image (o) “center of lake” Image (p) “building”

Image (q) “floor bottom center” Image (r) “city” Image (s) “lizard”

Image (t) “man with back to camera” Image (u) “the man in black
bottom left” Image (v) “bottom center white hat”

Figure 1. Qualitative results of referring image segmentation obtained by our framework.



Query: “a man in grey”

Query: “the glass of ice water”

Query: “a man wearing glasses and a pin striped shirt is smiling”

Query: “a man sitting on a road taking a picture”

Query: “stairs on the left”

Query: “piano”

Query: “the main city”

Image WWbL [11] Ours (Step-1) Ours (Step-2) GT

Figure 2. More visual comparison of WWbL and our framework (Step-1 and 2) for WRIS.
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