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1. Overview
In the supplementary materials, we first point out the

differences between our RegFormer and previous registration
works in Section 2. Also, more network details are shown
including both the network architecture and parameters in
Section 3. Finally, extensive qualitative and quantitative
experiment results in Section 4 are given to demonstrate
the superiority of our RegFormer. Moreover, we evaluate
our RegFormer on the LiDAR odometry task. The state-of-
the-art performance on the odometry task proves that our
network has strong generalization capability.

2. Comparison with Previous Pipelines
As illustrated in Fig. 1 A), most point cloud registra-

tion works follow a two-stage paradigm, which first extracts
explicit correspondences by learning discriminative local de-
scriptors [4] or keypoint detection [1]. Then, estimators (eg.
SVD) are utilized to regress the transformation through these
correspondences. The second stage is commonly figured out
as an optimization problem:

R, t = argmin
R,t

∑
i

∥Rxi + t− yi)∥2, (1)

where xi, yi are the i-th pair of putative correspondence
coordinates. ∥ · ∥2 indicates the L2 Norm. Different from
these previous works, our network inputs projected point
cloud patches into the transformer with a global perspective
as in Fig. 1 B). Our RegFormer gets rid of the explicit cor-
respondence establishment. Also, the final pose is directly
generated from learned powerful geometric association fea-
tures between two frames. Without any post-processing
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Figure 1: Comparison with previous pipelines. Most regis-
tration works follow a two-stage paradigm as the left figure
A). They first extract explicit correspondences by learning
discriminative local descriptors, and then leverage estima-
tors to regress the transformation. Differently, our network
directly inputs projected point cloud patches into the trans-
former with a global perspective B).

choice, our network can filter outliers effectively since the
global understanding of feature maps is helpful to recognize
the dynamic motions and localize the occluded objects.

3. Network Architecture Details
In this section, we give a comprehensive description of

the architectural details of the whole network.

3.1. Network Configurations

In RegFormer, we first leverage three successive feature
extraction transformer stages to extract global features. Then,
a bijective association transformer is designed to correlate
two point cloud frames and generate initial motion embed-



Module Layer N Sample rate Channels MLP width Heads

Set conv layer for IS and IT in stage 1 2 [H/4×W/8] 16 [16,64,16] 2
Set conv layer for PCS

1 and PCT
1 in stage 2 2 [H/8×W/16] 32 [32,64,32] 4Feature Extraction

Transformer Set conv layer for PCS
2 and PCT

2 in stage 3 6 [H/16×W/32] 64 [64,256,64] 8

Bijective Association
Transformer Cross-attention layer in stage 3 6 — 64 [64,256,64] 8

Table 1: Detailed network parameters in Transformer. N denotes the number of transformer blocks. MLP width indicates
the expansion layer of MLP in feed-forward networks. The variables in the table are defined the same as in the main manuscript.

dings. Finally, the transformation is recovered from these
embeddings and refined iteratively.

Feature extraction transformer: For the feature ex-
traction part of our RegFormer, we establish a three-stage
successive downsampling transformer following most vision
transformer architectures. Notably, the sample rate of our
RegFormer is slightly different from the vision transformer
architecture. As to images, the input height is usually equal
to the width. However, due to the raw 3D data structure,
projected pseudo images are not square in shape. Instead,
they have a strip-like shape where widths are much larger
than heights since LiDAR sensors can cover 360 degrees
in the horizontal direction but a limited field in the vertical
direction. Thus, we set the downsampling rate as [4, 2, 2]
for the height and [8, 2, 2] for the width of initial feature
maps as depicted in Table 1. Also, feature channels become
twice after each patch merging layer. We add the attention
heads accordingly for better modeling capability. The MLP
expansion is set as 4 in each transformer block.

Bijetive association transformer: Apart from the sam-
ple rate, other parameters in the cross-attention block of BAT
are the same as the ones in stage 3 of the feature extraction
transformer. When it comes to the all-to-all point gathering
module, each point in one frame correlates with all K points
in the other frame as in Table 2, where K is 224 in layer
3. Then, initial motion embeddings and transformations are
generated from correlated features.

Interative refinement with PWC structure: In the main
manuscript, we have briefly clarified the PWC refinement
structure [9], where Pyramid, Warp, and Cost-volume are
applied to recover the precise transformation. In Table 2, we
show more details about the PWC structure. First, the source
point cloud is warped by the transformation from the upper
layers. The warped source point cloud is closer to the target
one. Then, we calculate the attentive cost volume [12] be-
tween warped source point cloud features and original target
point cloud features. Finally, features from the cost volume
layer together with upsampled features will go through a
shared MLP for generating residual motion embeddings.

The PWC (Pyramid, Warping, and Cost volume) refine-
ment is extremely crucial for generating the precise transfor-
mation. As in Table 5 of the main manuscript, the all-to-all

strategy in the coarsest layer still has 30% errors because of
the lowest resolution with sparse points. Then, the source
point cloud will be iteratively warped closer to target one by
the estimated coarse transformation. Therefore, this warp-
ing operation makes the following local point association in
finer layers effective enough to estimate large residual trans-
formation iteratively (15.7%, 16.9%, 3.0% improvement
respectively in three iterations).

3.2. Cross-Attention Mechanism in BAT

In this section, we show more detailed descriptions of
the cross-attention mechanism in our Bijective Association
Transformer (BAT). This layer fully correlates points within
the same frame and also between different frames as depicted
in Algorithm 1.

To be more specific, given unconditioned features of two
point cloud frames FS

3 , FT
3 and their masks MS

3 , MT
3 in

stage 3 of the feature extraction transformer layer, cyclic shift
and window partition are employed on both point clouds and
their corresponding masks. Take the source point cloud as an
example, FS

3 and MS
3 are first fed into a PW-MSA module.

The same goes for the target point cloud, which enables each
point to interact with other points in the same frame as:
F̃S = PW -MSA(FS

3 )

= Attention(FS
3 ×WQ, FS

3 ×WK , FS
3 ×WV )

= Attention(QS
3 ,K

S
3 , V

S
3 )

= softmax(
QS

3K
S
3√

dhead
+MS

3 +Bias)V S
3 , (2)

F̃T = PW -MSA(FT
3 )

= Attention(FT
3 ×WQ, FT

3 ×WK , FT
3 ×WV )

= Attention(QS
3 ,K

S
3 , V

S
3 )

= softmax(
QS

3K
S
3√

dhead
+MT

3 +Bias)V S
3 , (3)

where WQ, WK , and WV are learned projected functions.
Bias is the relative position encoding operation.

Then, output features F̃S of PW-MSA will associate with
F̃T for ego-motion estimation. Specifically, F̃S is linearly



Module Layer type K Sample rate MLP width

All-to-all point gathering 224 1 [128,64,64], [128,64]
Shared MLP for FE — 1 [128,64]

FC1 for q3, FC2 for t3 — 1 [4], [3]

Generation of
Initial Transformation

Attentive cost volume 4, 6 1 [128,64,64], [128,64]
Set upconv 8 2× 2 [128,64], [64]

Shared MLP for FE2 — 1 [128,64]Pose Warp-Refinement for q2,t2

FC1 for q2, FC2 for t2 — 1 [4], [3]

Attentive cost volume 4, 6 1 [128,64,64], [128,64]
Set upconv 8 2× 2 [128,64], [64]

Shared MLP for FE1 — 1 [128,64]Pose Warp-Refinement for q1,t1

FC1 for q1, FC2 for t1 — 1 [4], [3]

Attentive cost volume 4, 6 1 [128,64,64], [128,64]
Set upconv 8 4× 8 [128,64], [64]

Shared MLP for FE0 — 1 [128,64]Pose Warp-Refinement for q0,t0

FC1 for q0, FC2 for t0 — 1 [4], [3]

Iterative Refinement with
PWC Structure

Table 2: Detailed network parameters in pose generation and refinement. K points are selected in the K Nearest Neighbors
(KNN) of the all-to-all point gathering layer, set upconv layer, and attentive cost volume layer. MLP width means the number
of output channels for each layer of MLP. The variables in the table are defined the same as in the main manuscript.

projected as query (Q̃S), F̃T is linearly projected as key
(K̃T ) and value (Ṽ T ). We calculate attention weights by
feeding them into the same PW-MSA block as:

F̃S
i = Attention(F̃S ×WQ, F̃T ×WK , F̃T ×WV )

= Attention(Q̃S , K̃S , Ṽ S)

= softmax(
Q̃SK̃S

√
dhead

+MS
3 +Bias)Ṽ S , (4)

F̃T
i = Attention(F̃T

3 ×WQ, F̃S
3 ×WK , F̃S

3 ×WV )

= Attention(Q̃S , K̃S , Ṽ S)

= softmax(
Q̃SK̃S

√
dhead

+MT
3 +Bias)Ṽ S . (5)

This step resembles the encoder-decoder conjunction in a
vanilla transformer, which enables the network to learn
relative position transformation between two frames. All
the above processes will be repeated once in the following
Point Shift Window-based Self Attention block (PSW-WSA).
Then, we reverse window partition and shifting operations.
Finally, correlated features F̃S

L , F̃T
L are output as input for

the all-to-all point gathering module.

4. Additional Experiment
4.1. Evaluation Metrics

We follow protocols of DGR [3] to evaluate our Reg-
Former with three metrics: (1) Relative Translation Error
(RTE), the Euclidean distance between predicted and ground-
truth translation vectors. (2) Relative Rotation Error (RRE),

the geodesic distance between estimated and ground-truth ro-
tation parameters. (3) Registration Recall (RR), the average
success ratio of the registration. Registration is successful
when RRE and RTE are within a certain threshold. RRE and
RTE can be calculated as:

RRE = arccos
Tr(Rpred

TRgt − 1)

2
, (6)

RTE = ∥tgt − tpred∥2, (7)

where Rpred and tpred are predicted rotation and translation
vectors. Rgt and tgt are the ground truth ones. Note that
failed registrations can lead to unreliable error metrics, we
only calculate RRE and RTE for successful registrations
[3, 5, 4, 1].

4.2. Generalization ability on LiDAR Odometry

For evaluating the generalization ability of RegFormer,
we also apply our large-scale registration network to the Li-
DAR odometry, which is a downstream task of point cloud
registration. From Table 3, we can see our RegFormer can
outperform all recent learning-based methods including LO-
Net [6], SelfVoxelLO [13], RSLO [14] et al. by a large
margin. Compared with classical methods, our network has
a 25.8% lower translation error and a 25.6% lower rotation
error. Notably, loop closure and mapping are not applied in
our registration network, so we only compare with LOAM
[15] and SUMA [2] without mapping and loop closure for a
fair comparison. Experiment results show the strong gener-
alization ability of RegFormer.

4.3. Qualitative Visualization

In this section, we will visualize more qualitative experi-
ment results to demonstrate the registration accuracy of our



00∗ 01∗ 02∗ 03∗ 04∗ 05∗ 06∗ 07† 08† 09† 10† Mean on 07-10Method
trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel

ICP-po2po 6.88 2.99 11.21 2.58 8.21 3.39 11.07 5.05 6.64 4.02 3.97 1.93 1.95 1.59 5.17 3.35 10.04 4.93 6.93 2.89 8.91 4.74 7.359 3.407
ICP-po2pl 3.80 1.73 13.53 2.58 9.00 2.74 2.72 1.63 2.96 2.58 2.29 1.08 1.77 1.00 1.55 1.42 4.42 2.14 3.95 1.71 6.13 2.60 4.735 1.932
GICP [7] 1.29 0.64 4.39 0.91 2.53 0.77 1.68 1.08 3.76 1.07 1.02 0.54 0.92 0.46 0.64 0.45 1.58 0.75 1.97 0.77 1.31 0.62 1.921 0.733
CLS [10] 2.11 0.95 4.22 1.05 2.29 0.86 1.63 1.09 1.59 0.71 1.98 0.92 0.92 0.46 1.04 0.73 2.14 1.05 1.95 0.92 3.46 1.28 2.148 0.995
LOAM w/o mapping [15] 15.99 6.25 3.43 0.93 9.40 3.68 18.18 9.91 9.59 4.57 9.16 4.10 8.91 4.63 10.87 6.76 12.72 5.77 8.10 4.30 12.67 8.79 10.820 5.426
LeGO-LOAM [8] 2.17 1.05 13.4 1.02 2.17 1.01 2.34 1.18 1.27 1.01 1.28 0.74 1.06 0.63 1.12 0.81 1.99 0.94 1.97 0.98 2.21 0.92 2.49 1.00
SuMa w/o mapping [2] 2.93 0.92 2.09 0.93 4.05 1.22 2.30 0.79 1.43 0.75 11.9 1.06 1.46 0.79 1.75 1.17 2.53 0.96 1.92 0.78 1.81 0.97 2.93 0.92

C
la

ss
ic

PUMA [11] 1.46 0.68 3.38 1.00 1.86 0.72 1.60 1.10 1.63 0.92 1.20 0.61 0.88 0.42 0.72 0.55 1.44 0.61 1.51 0.66 1.38 0.84 1.55 0.74

Zhou et al. [16] NG NG NG NG NG NG NG NG NG NG NG NG NG NG 21.3 6.65 21.9 2.91 18.8 3.21 14.3 3.30 19.10 4.02
LO-Net [6] 1.47 0.72 1.36 0.47 1.52 0.71 1.03 0.66 0.51 0.65 1.04 0.69 0.71 0.50 1.70 0.89 2.12 0.77 1.37 0.58 1.80 0.93 1.330 0.688
SelfVoxeLO [13] NG NG NG NG NG NG NG NG NG NG NG NG NG NG 2.51 1.15 2.65 1.00 2.86 1.17 3.22 1.26 2.81 1.15
RSLO w/o mapping [14] NG NG NG NG NG NG NG NG NG NG NG NG NG NG 2.37 1.15 2.14 0.92 2.61 1.05 2.33 0.94 2.36 1.02

D
L

-b
as

ed

Ours 0.88 0.41 1.17 0.46 0.91 0.35 1.03 0.73 0.36 0.21 0.64 0.43 0.74 0.33 0.57 0.44 1.34 0.52 1.09 0.54 1.46 0.71 1.115 0.553

Table 3: Comparison with the state-of-the-art on the odometry task. trel, rrel indicate the average translation RMSE (%)
and rotation RMSE (◦/100m) respectively on all subsequences in the length of 100, 200, ..., 800m. ‘∗’ means the training
sequence, ‘†’ means the testing ones. ‘NG’ means results are not given. The best result for each sequence is bold.

Figure 2: Visualization of traffic flow scenes. Our transformed PC2 is highly overlapped with PC1 on trees and buildings
(static objects), while has nearly no overlap on moving cars (dynamic or occluded objects). The transformed PC2 from
HRegNet has large registration errors compared with ours.

RegFormer.
Filtering outliers in dense traffic flow. Our RegFormer

has the capability to filter dynamics and occlusion with the
transformer’s global modeling. We visualize this benefit in
dense traffic flows. As in Fig. 2 a), the car turning right is
viewed as a dynamic object and harmful to the regression
of transformation, while trees and buildings (static objects)
are beneficial to the overall pose regression. From the visu-
alization result, it is obvious that transformed PC2 is almost
overlapped with PC1 on trees and buildings but has nearly
no points shared with the dynamic car. Similarly, our Reg-
Former can also identify the locations of occluded cars in
Fig. 2 b).

Registration results. First of all, we display a series of
registration samples in Fig. 3. Point clouds colored red and
green are input point pairs respectively. Transformed point
clouds by poses from HregNet are colored pink in the second
column. Transformed point clouds by our predicted poses
and the ground truth ones are colored blue and purple. From
the figures, we can see our predicted point clouds are almost

overlapped with the ground truth ones in outdoor large-scale
scenes. Also, a better performance of our method proves
that transformer is more suitable for large-scale point cloud
registration than CNN-based methods, eg. HRegNet.

Registration errors. Furthermore, we show more sam-
ples with registration error analysis in Fig. 4 and Fig. 5.
The first row indicates the ground truth and predicted point
clouds. Error vectors are indicated separately with the Bird’s
Eye View (BEV) in the second row and with the side view
in the third row. In the main manuscript, we have already
found the error distribution characteristics of the horizontal
direction. In this section, we mainly summarize in which
direction the registration errors are larger, with respect to the
vertical and horizontal directions. As illustrated in Fig. 4 and
Fig. 5, errors commonly come from the horizontal direction
since the ground is a huge plane that offers sufficient infor-
mation to localize the vertical position variation. In Fig. 5
e), it is more obvious that there are relatively larger errors in
the horizontal direction with the Bird’s Eye View (BEV), but
almost no errors in the vertical direction where the ground



Algorithm 1 The cross-attention block in BAT.
Input: Uncorrelated point cloud features FS

3 , FT
3 and their

corresponding masks MS
3 , MT

3 of two consecutive frames
from stage 3 of the feature extraction transformer.
Parameter: Number of transformer blocks: L.
Output: Correlated point cloud features F̃S

L , F̃T
L .

1: Initialize i = 0. (Parameter i is used for indicating
whether the cyclic shift is employed in the transformer.)

2: while i <= L do
3: Each point associates with other points in the same

frame as:
F̃S = PW -MSA(LN(QS

3 ,K
S
3 , V

S
3 ),MS

3 ) + FS
3 .

F̃T = PW -MSA(LN(QT
3 ,K

T
3 , V

T
3 ),MT

3 ) + FT
3 .

4: if i%2 == 0 then
5: Points associate with points from the other frame

(without shift) as:
F̃S
i = PW -MSA(LN(Q̃S , K̃T , Ṽ T ),MS

3 ) +
F̃S .
F̃T
i = PW -MSA(LN(Q̃T , K̃S , Ṽ S),MT

3 ) +
F̃T .

6: else
7: Points associate with points from the other frame

(with shift) as:
F̃S
i = PSW -MSA(LN(Q̃S , K̃T , Ṽ T ),MS

3 ) +
F̃S .
F̃T
i = PSW -MSA(LN(Q̃T , K̃S , Ṽ S),MT

3 ) +
F̃T .

8: end if
9: i + = 1.

10: end while
11: return F̃S

L , F̃T
L

truth point cloud (yellow) has almost covered the predicted
one (blue).
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Figure 3: Qualitative visualization of our RegFormer. We display a series of registration samples of our RegFormer. Without
any post-processing and local descriptors, our RegFormer can also achieve higher accuracy than HRegNet.



Figure 4: Visualization of registration errors (1). For the analysis of registration errors, we display more samples where error
vectors (red) point from the predicted point cloud (blue) to the ground truth one (yellow). The first row indicates the ground
truth and predicted point clouds. Error vectors are indicated separately with the Bird’s Eye View (BEV) in the second row and
with the side view in the third row.



Figure 5: Visualization of registration errors (2). For the analysis of registration errors, we display more samples where error
vectors (red) point from the predicted point cloud (blue) to the ground truth one (yellow). The first row indicates the ground
truth and predicted point clouds. Error vectors are indicated separately with the Bird’s Eye View (BEV) in the second row and
with the side view in the third row.


