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Figure 1: The detailed workflow of the RPL module. The blue blocks denote the convolutional layers in the original
closed-set segmentation models, the violet blocks represent our RPL module, and the dashed line (“- - -”) means the blocks
that are processed without requiring training. We produce the pseudo label (ỹ) via the path of 1 → 2 → 3 → 5 ∪ 4 →
ỹ, and we produce prediction (ŷ) via 1 → 3 → 6 → 7 + ( 5 ∪ 4 )→ ŷ

.

A. The Architecture of Residual Pattern
Learning (RPL) and DeepLabV3+

The RPL module is externally attached to the closed-set
segmentation network that assists in deciding the potential
anomalies, where we utilise DeeplabV3+ [2] as our archi-
tecture. As shown in Fig. 1, the batch (B) of RGB-based
images under height (H) and width (W) in 1 will be fed
to the FCN encoder network (e.g., WiderResNet38) first to
produce the feature map with 4096 channels in 3 . This
feature map will then go through the Atrous Spatial Pyra-
mid Pooling (ASPP) layers and RPL module to produce the
outputs under the same resolution (i.e., 256 channels) in 5
and 6 , respectively. After that, the representation extracted
from shallow layers (in 2 ) will go through a convolutional

layer to produce the feature maps in 4 that are concate-
nated with 5 . Then the combined feature map will be fed
into the final classifier (Seg. head) to produce ỹ. The fea-
ture map in 6 will be processed by the following convolu-
tional layer to expand the channels to 304, which are added
to the intermediate feature map from the original segmenta-
tion model in 7 . Finally, such feature map with a potential
anomaly will be classified to produce ŷ. During training,
we utilise H = 700, W = 700 and B = 8 in stage 1 , to
produce H ′ = W ′ = 88 in stage 3 and H” = W” = 350
in 4 5 6 . Finally, the Seg. head will produce ỹ, ŷ with
shape 8×19×700×700 based on the bilinear upsampling,
where 19 is the closed-set (i.e., Cityscapes [3]) categories.

1



image
pool

[B,  
256,
H", W"]

[B,  
256,
H", W"]

[B,  
256,
H", W"]

[B,  
256,
H", W"]

kernel_size=1, kernel_num=256
[B,  
256,
H", W"]

[B
, 4

09
6,

 H
', 

W
']

Concatenate
256 * 5 =1280 

kernel_size=1,
kernel_num=304

for CoroCL training

[B,  
1280,
H", W"]

[B, 304, h, w]  

for RPL training 

[B, 304, h, w]  

kernel_size=1, kernel_num=256

kernel_size=1,
kernel_num=304

kernel_size=3,
kernel_num=256, dilate=12,

padding=12

kernel_size=3,
kernel_num=256, dilate=24,

padding=24

kernel_size=3,
kernel_num=256, dilate=36,

padding=36

CoroCL head RPL head

kernel_size=1,
kernel_num=256

Figure 2: The detailed architecture of RPL and CoroCL. Our proposed RPL firstly encodes the incoming features from
the segmentation network into a set features extracted from different dilated rates and concatenate them together. After being
processed by the following convolutional layer, RPL will output the results for CoroCL optimisation (main paper Eq. (7)) and
segmentation head (main paper Eq. (3)) based on two separate heads. Note: the region inside the cyan region is motivated
from ASPP [1, 2].
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Figure 3: The detailed workflow of the CoroCL. The blue
lines denote the forward pass with the inlier context features
(i.e., based on the input of xoe), while the green lines repre-
sent the OoD context features (i.e., based on xout).

A.1. The Architecture of RPL with Context-Robust
Contrastive Learning (CoroCL)

On top of the RPL module, we propose CoroCL to gen-
eralise the OoD detector for various open-world contexts,
as demonstrated in Fig. 3. CoroCL pulls the embedding
features that belong to the same class (i.e., both are OoD
or inliers) closer and pushes apart those embeddings from
different classes (i.e., one is inlier and the other is the out-

lier, or vice versa). We extract those embeddings based on
an extra convolutional layer (also known as the ”projector”)
via the intermediate features from inlier and OoD contexts,
where the projector expands the features from 256 chan-
nels to the R depth of the embedding features. In our ex-
periments, R = 304 shows the best performance which is
demonstrated in Fig. 6 of the main paper.

A.2. The detailed architecture of RPL and CoroCL

As shown in Fig. 2, we design our proposed RPL module
based on the Atrous Spatial Pyramid Pooling (ASPP) [1, 2]
block in [15], followed by one convolutional head for
CoroCL and one for RPL. During training, the incoming
feature (with 4096 channels) will go through a set of convo-
lutional layers that have different dilation rates which pro-
duce a set of features that are concatenated to form the
feature map with depth 1280. There is one more convo-
lutional layer to extract the information from such concate-
nated feature map and reduce the channels to 256. Finally,
the heads of CoroCL and RPL will produce the outputs with
304 depth for training.



Table 1: Comparing with SOTAs on Fihsyscapes and SMIYC test benchmarks1,2 with extra datasets [10,14]. Our results
are in bold, and the gray row shows the method [4] that utilises a post-processing to narrow the anomaly detection area.

Methods Anomaly Detection Area
Fishyscapes (test) SMIYC (test)

Static Lost&Found AnomalyTrack ObstacleTrack
FPR AuPRC FPR AuPRC FPR AuPRC FPR AuPRC

NFlowJS [4] whole image 15.41 52.12 8.98 39.36 34.71 56.92 0.41 85.55
DenseHybrid [5] whole image - - - - 9.81 77.96 0.24 87.08

Ours whole image 0.53 95.80 2.24 59.43 6.22 90.78 0.40 88.61
NFlowJS (w/ GF) [4] road/sidewalks pixels 100 50.11 1.96 69.43 - - - -

Table 2: Improvements for different backbones on Fihsyscapes, SMIYC and RoadAnomaly validation sets. “Before”
represents the pixel-wise anomaly detection performance based on the closed-set segmentation model, while “After” denotes
the results after the training of RPL with CoroCL. We use red to represent a decrease and green to represent an increase in
the “Improve” row and the results reported in the main paper are in boldface.

Backbone
Fishyscapes SMIYC

RoadAnomaly
Static L&F Anomaly Obstacle

FPR↓ AP↑ ROC↑ FPR↓ AP↑ ROC↑ FPR↓ AP↑ ROC↑ FPR↓ AP↑ ROC↑ FPR↓ AP↑ ROC↑

MobileNet
Before 47.94 17.45 88.84 42.87 6.32 90.56 46.19 51.92 87.17 6.86 52.18 98.32 67.81 20.27 73.76
After 18.64 74.42 96.89 20.77 48.54 96.59 26.74 63.52 91.43 3.26 80.07 99.23 38.11 62.49 91.72

Improve 29.30 57.27 8.05 22.10 42.22 6.03 19.45 11.60 4.26 3.60 27.89 0.91 29.70 42.22 17.96

ResNet50
Before 46.66 28.64 89.01 42.04 10.15 91.24 65.75 46.46 81.07 6.55 49.12 91.33 67.61 22.08 72.78
After 5.69 87.27 99.07 16.78 49.92 97.78 22.51 72.18 94.08 2.62 74.40 99.42 26.18 63.96 93.24

Improve 40.97 58.63 10.06 25.26 39.77 6.54 43.24 25.72 13.01 3.93 25.28 8.09 41.43 41.88 20.46

ResNet101
Before 42.85 30.15 90.16 38.07 24.57 92.36 44.92 53.91 86.50 23.75 13.30 93.78 66.21 24.05 77.25
After 1.61 89.88 99.14 8.82 60.08 98.84 15.13 74.83 95.14 2.46 78.78 99.66 24.54 65.42 94.24

Improve 41.24 59.73 8.98 29.25 35.51 6.48 29.79 20.92 9.64 21.29 65.48 5.88 41.67 41.37 16.99

WiderResNet38
Before 17.78 41.68 95.90 41.78 16.05 93.72 67.75 44.54 80.26 4.50 34.44 99.67 69.99 19.95 73.61
After 0.85 92.46 99.73 2.52 70.61 99.39 7.18 88.55 98.06 0.09 96.91 99.97 17.74 71.61 95.72

Improve 16.93 50.78 3.83 39.26 54.56 5.67 60.57 44.01 9.80 4.41 62.47 1.30 52.25 51.66 22.11

B. Experiments with Extra Training Set
Dataset descriptions. The NFlowJS [4] and Densehy-
brid [5] have additional experimental setups that fine-tune
the OoD detector to extra training sets, including Vis-
tas [10] and Wilddash2 [14]. Vistas [10] contain 20, 000
images from real-world driving scenes with high resolution
(2592 × 1944 pixels) and 66 categories of finely-annotated
pixel-wise labels. Similarly, Wilddash2 [14] is another driv-
ing scene dataset containing 4, 255 images with 80 cate-
gories in total, where each image has 1920 × 1080 pixels.
Given that the experimental setup presented in our submit-
ted main paper only utilises Cityscapes [3] (i.e., 29, 75) im-
ages, fine-tuning the OoD detector with those extra training
sets enables better robustness to hard inliers.
Results from Fishyscape1 and SMIYC2. To enable a fair
comparison, we follow [4, 5] to fine-tune our RPL module
with 10 epochs for both Vistas [10] and Wilddash2 [14].
Tab. 1 shows that our method outperforms other approaches
under the same setup. For example, our AuPRC results are
12.82% and 1.53% higher than Densehybrid [5] on SMIYC-
Anomaly and SMIYC-Obstacle subsets, respectively.

1https://fishyscapes.com/results
2https://segmentmeifyoucan.com/leaderboard

The Ground-Focus (GF) post-process in the last row
of Tab. 1 merges all road and sidewalk pixels to a com-
mon ”ground” class by creating a convex hull that encap-
sulates all such pixels. During inference, all the pixels
outside this hull will be ignored, producing significant im-
provements for Fishyscapes-Lost&Found dataset. How-
ever, real-world anomalies (e.g., birds) might not be lo-
cated on the ”ground”, reducing its practicability. For exam-
ple, Fishyscapes-Static has anomalies outside the road that
are never detected, leading to unsatisfactory performance.
In addition, the inaccurate prediction of the road/sidewalks
categories also results in the misdetection of the anomalies.

C. More Implementation Details

We provide more implementation details in this section.
In the training of RPL, we partially load the parameters
from the pre-trained ASPP block in DeepLabV3+ [1, 2] to
the main RPL module, as they share the same architec-
ture. We initialise the convolutional head for RPL based
on [6] and we apply 10 times the learning rate (with
7.5e−4) to the head compared with other convolutional
layers that are trained. The images from Cityscape [3]



Table 3: Ablations for CoroCL on Fishyscapes, SMIYC and RoadAnomaly validation sets. We define the OoD, inlier
with { , } in COCO context and { , } in city context. The best performance are in bold.

Anchor Contrastive
Fishyscapes SMIYC

RoadAnomaly
Static L&F Anomaly Obstacle

FPR AP ROC FPR AP ROC FPR AP ROC FPR AP ROC FPR AP ROC

1.43 91.23 99.47 4.26 67.37 98.10 21.91 77.76 94.91 6.37 92.13 99.81 25.84 62.61 93.70
1.70 88.72 99.57 6.97 56.84 98.70 9.41 86.62 97.57 0.11 95.92 99.94 21.0 69.89 95.70
1.79 89.90 99.52 3.74 68.17 98.95 11.31 86.37 97.27 0.29 94.31 99.93 26.78 66.91 93.87
0.85 92.46 99.73 2.52 70.61 99.39 7.18 88.55 98.06 0.09 96.91 99.97 17.74 71.61 95.72
1.57 90.24 99.58 4.90 60.72 98.53 15.29 82.94 97.18 0.10 96.58 99.96 19.62 68.97 95.44

Table 4: The impact of the projector architecture on the
SMIYC-Anomaly and RoadAnomaly datasets.

Architecture SMIYC-Anomaly RoadAnomaly
FPR AuPRC AuROC FPR AuPRC AuROC

2 layers (w/o BN) 14.56 82.08 95.51 21.94 62.59 94.47
2 layers (w/ BN) 13.72 83.24 95.95 21.11 63.81 94.53
single-layer 7.18 88.55 98.06 17.74 71.61 95.72

are randomly cropped with 700 × 700 resolution, while
the COCO [8] images are randomly scaled with ratio in
{.1, .125, .25, .5, .75} and then mixed with the city images
based on outlier exposure (OE) [11]. Meanwhile, we copy
the vanilla COCO images based on padding or centre crop-
ping to the same resolution of 700 × 700 as city images
for contrastive learning. In the training of CoroCL, we
concatenate the context images from COCO and Cityscapes
and extract the embeddings of both contexts via single for-
ward propagation. We randomly choose 512 pixel-wise
samples from both inlier and OoD in city and COCO con-
texts to perform CoroCL based on the Eq. (7) (from the
main paper), where τ = 0.10 for all the experiments.

We train the RPL module with one Tesla V100 16GB
and RPL+CoroCL with one RTX A6000, as the con-
trastive learning needs more GPU memory. Following
previous works [7, 12], we discard the projector head af-
ter training and directly utilise RPL outputs to induce the
closed-segmentation to produce high-uncertainty in poten-
tial anomalous regions.

D. Results from Different Backbones

Tab. 2 displays the results of our approach with differ-
ent backbones, while we measure them based on the area
under the receiver operating characteristics (AuROC), av-
erage precision (AP), and false positive rate at a true posi-
tive rate of 95% (FPR). We report the closed-set segmenta-
tion performance in “Before” and our performance in “Af-
ter”, while the improvements in all backbones demonstrate
the generalisation of our approach. For example, our ap-
proach improves the performance by 29.70%, 41.43% and
52.25% FPR in the RoadAnomaly validation set for Mo-
bileNet, ResNet50 and WiderResNet38, respectively.

case (a) case (b) case (c)

Fig †: T-SNE visualisation of RPL outputs w/o CoroCL
(first row) and with CoroCL (second row). Each column
uses the same images, where city and non-city contexts in-
liers are and , while city and non-city contexts outliers
are and . Better viewed in zoomed-in mode.

E. More Details of CoroCL

Impact of Projector Architecture. Differently from pre-
vious contrastive learning methods [12, 13], we find that
a projector with a single-layer performs better than with a
multi-layer, as shown in Tab. 4, which may be due to a better
robustness to overfitting given the smaller number of layers.
Construction of Anchor and Contrastive Sets We imple-
ment the ablation of the anchor and contrastive sets based
on AuROC, AP and false positive rate at a true positive rate
of 95% (FPR) in Tab. 3. The pixel-wise embedding samples
in our training have OoD ( ) and inlier ( ) in the COCO
context and OoD ( ) and inlier ( ) in the city context, as
shown in Fig. 2 in the main paper. The choice of the sam-
ples that build the anchor and contrastive sets will heavily
impact the final performance. For example, using city con-
text samples { , } for both anchor and contrastive sets (in
the first row) yields great performance in Fishyscapes (e.g.,
91.23% AP in Static and 67.37% AP in L&F) but the poor
performance in SMIYC. On the contrary, using COCO con-
text samples { , } for both anchor and contrastive sets (in
the second row) improves the results by 12.5% and 6.26%
FPR in both Anomaly and Obstacle of SMIYC but demon-
strates worse performance in Fishyscapes. The best perfor-
mance is observed when we use { , } to construct an-
chor set and { , , , } to be the contrastive set, which



Figure 5: The self-attention results of the learned residual pattern feature from RoadAnomaly [9].

Table 5: Results on StreetHazards w/ LDN-121 net
based on the closed-set checkpoint and evaluation code
on https://github.com/matejgrcic/DenseHybrid.
The Closed/Open sets are measured by mean IoU and we
use energy to compute anomaly score. ∗ denotes the results
from pretrained inlier model for both our approach and [5].

Method Anomaly Detection Closed-set Open-set
FPR AP AuC (t5) (t6)

LDN-121* 15.6 16.7 95.1 65.0 39.3 44.5
DenseH [5] 13.0 30.2 95.6 63.0 46.1 45.3

RPL 8.22 31.15 97.19 65.0 58.14 54.38

achieves the reported performance in the main paper. Com-
pared with our results (in the fourth row of Tab. 3.), the last
row additionally enforces → ← and ← → (based
on Eq. 7 in the main paper). Due to the training and valida-
tion datasets based on the driving scenes, we suspect that the
optimisation applied to the daily natural images (i.e., COCO
contexts) damages the convergence of our approach, which
yields unsatisfactory performance.
T-SNE visulaisation. As shown in Fig. †, we apply T-
SNE on the outputs of RPL block for both city and other
context images. Using the same images (each column), we
randomly sample 4000 pixel-wise RPL embeddings. We
observe the RPL results w/o CoroCL (first row) can only
separate anomalies in city contexts ( and ), but fail in
non-city contexts ( and ). CoroCL (second row) clus-
ters the inliers from various scenes while pushing the out-
liers away, independently of city/non-city contexts.

F. Generalization and results in StreetHazard
RPL can be easily adopted by other FCN-based archi-

tectures by attaching the RPL module before the pixel-

wise classifier head. For example, we easily attach the
RPL module to the LDN-121 segmentation model, with re-
sults in Tab Tab. 5. Based on same pre-trained checkpoint,
the RPL’s results outperform the previous SOTA Dense-
hybrid [5] with 4.8% improvement in FPR and over 10%
mIoU in Open-set evaluation.

G. Visualisations of Residual Patterns
The learned residual patterns from the RPL feature map

r ∈ R304×H×W can be visualised via self-attention and the
pytorch-like code is in below:
torch.einsum(’abc,bca->bc’, r, r.permute(1,2,0)).
The visualisations of such learned residual patterns are
shown in Fig. 5, where the anomaly objects are highlighted.

H. More Visualisations of OoD Maps
Fig. 6 shows the anomaly segmentation visualisation re-

sults of our method. The results indicate that our method
successfully detects and segments anomaly objects in differ-
ent scenarios, including various hard anomalies. Rows 1-5
of the city scenes demonstrate that our method can detect
small and distant anomalies well, while rows 8 and 9 show
the robustness of our method to many anomalous objects,
which are successfully detected and segmented. The coun-
try context scene results show that our method can accu-
rately segment hard objects. Rows 1-5 and 8 also show that
our method accurately segments OoD animals. Row 9 of the
country scene is a hard challenge for anomaly segmentation
because most of the pixels in the image are anomalies, and
it is difficult for previous methods to identify such large-
scale anomalies. Nevertheless, our method can still detect
the anomalies on the road in this hard case.



(a) City Context Scenes (b) Country Context Scenes

Figure 6: More visualisations for our method in different contexts.
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