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A. Notation

In Table 1, we summarize the key notations used in our
paper for easy reference.

B. Architecture

Table 2 presents the details of the architecture of our pro-
posed CASE. As can be seen, the architecture is simple and
lightweight, consisting of only a few 1D convolutional lay-
ers with a kernel size of 1 and linear layers, leading to the
high efficiency of our method.
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Notation Shape Description

Baseline
PA N foreground probability
QA N pseudo-labels of PA

Z N ×D snippet embedding

SCC
PS N ×K cluster assignment probability
QS N ×K pseudo-labels of PS

Q̂S N ×K prior distribution of QS

CCC
PC K × 2 cluster classification probability
QC K × 2 pseudo-labels of PC

βC 2 prior marginal distribution of QC

Testing PT N ×K transformed foreground probability
PM N ×K fused foreground probability

Table 1: Key notations in this paper.

component layer kernel stride dim act output size
Embedding Encoder

Baseline

Conv1d 1 1 512 Relu 512×T
Action Classifier

Conv1d 1 1 G Softmax G× T
Embedding Encoder

Conv1d 1 1 512 Relu 512×T
Attention layer

Conv1d 1 1 1 Sigmoid 1× T

Our Algorithm
Clustering Head

Linear 1 1 K Softmax K × T

Table 2: The detailed architecture of CASE, where the RGB
stream and optical flow stream share the same structure.

C. Additional Ablation Experiments

C.1. Ablation on multiple datasets

To show the effectiveness of our method in various sce-
narios, we perform a component-wise ablation study for the
snippet clustering component (SCC) and the cluster classifi-
cation component (CCC) on THUMOS14, ActivityNet v1.2
and v1.3. The corresponding results are provided in Table 3.
We observe consistent trends across all datasets, indicating
the robustness and effectiveness of our approach.



THUMOS14 ActivityNet v1.2 ActivityNet v1.3
Baseline 42.1 25.6 24.7
+ SCC 43.2 26.5 25.4
+ SCC + CCC 43.9 27.0 25.7
+ SCC + CCC (T) 46.2 27.9 26.8

Table 3: Component-wise ablation study on THUMOS14,
ActivityNet v1.2 and v1.3. ”(T)” indicates that the
clustering-assisted testing technique is appiled.

VTB ATB GBCE mAP
✓ 32.0
✓ ✓ 41.7
✓ ✓ ✓ 42.1

Table 4: Ablation study on the baseline. VTB, ATB,
and GBCE indicate video classification branch, attention
branch, and generalized binary cross-entropy loss, respec-
tively. Notably, if GBCE is not used, we use the traditional
binary cross-entropy loss to train the ATB.

C.2. Analysis of baseline model

We carry out several ablation experiments to analyze the
components of the baseline. The results are illustrated in Ta-
ble 4. It can be seen that the attention branch largely in-
creases the performance, demonstrating the significance of
class-agnostic F&B separation. Additionally, we find that
the use of the generalized binary cross-entropy loss yields
better results than the traditional binary cross-entropy loss,
proving that enhancing the label noise tolerance is advanta-
geous.

C.3. Analysis of ranking indices rank

In SCC, we use the distance between the normalized
ranking indices of the snippets rank/N and the cluster-
level pseudo-labels QC to compute a 2D gaussian distribu-
tion. In principle, rank/N can be replaced by PA. How-
ever, we experimentally find that the performance of us-
ing PA is inferior to that of using rank/N (i.e., 45.1 for
PA vs. 46.2 for rank/N on average mAP). To explain it,
we show the statistics ( i.e., maximum, average and mini-
mum) of PA and QC in Fig. 1. The statistics are computed
over each batch (i.e., iteration). Notably, the maximum,
average, and minimum of rank/N are always 1

N ≃ 0,
0.5 + 0.5 1

N ≃ 0.5 and 1, respectively. As can be seen,
compared with PA, rank/N is more comparable to QC .
For example, both the average of QC and the average of
rank/N are around 0.5 and are evidently larger than the
average of PA. This observation confirms the validity of
our approach.

Figure 1: The maximum, average, and minimum values of
PA and QC of each iteration during training.

D. Additional Visualizations
D.1. Comparison to baseline

In Fig. 2, four visualized examples are provided to il-
lustrate the differences between the F&B separation results
of CASE and that of baseline. It can be observed that: 1)
CASE is advantageous to capture fine-grained patterns of
snippets that are helpful to distinguish different snippets
(see the solid boxes). For instance, in the region of ’4’,
which is near the boundary of a ’diving’ action instance,
the foreground snippets and the background snippets are
visually similar. However, CASE can accurately classify
these snippets into correct F&B classes, whereas the base-
line cannot, showing that CASE can capture the underlying
fine-grained structure of the snippets. 2) CASE performs
worse than the baseline in some ’suspicious’ regions (see
the dashed boxes). To name a few, in the region of ’8’, an
athlete raises her leg, causing CASE to mistake the region
for an action instance. This mistake may be avoided by the
baseline model because the video-level labels used to train
the baseline can offer instructive information for the poten-
tial action types within the videos.

D.2. Failure cases

We showcase some examples of failure cases of our
method in Fig. 3. From the figure, we conjecture the rea-
son that accounts for the failure cases are: 1) low quality
of images, e.g., ’1’ and ’8’; 2) indistinguishable body mo-
tions, e.g., ’3’ and ’7’; 3) small objects, e.g., ’2’ and ’4’;
4) incorrect annotation, e.g., ’5’ and ’6’. These challenging
cases represent future directions for our work.

E. Additional Discussion on Related Work
In our main paper, we extensively discussed the differ-

ences between our method and previous deep clustering and
WTAL methods in the Related Work section. In this section,
we would like to provide additional insights on other related



Figure 2: Comparison between our CASE and the baseline. The solid and dashed boxes represent the regions where CASE
outperforms and underperforms the baseline, respectively.

Figure 3: Samples of failure cases. The dashed boxes represent the regions with wrong predictions.

methods.

In the snippet clustering component (SCC), we draw in-
spiration from the early sequence-matching method [13] to

construct a prior distribution for the pseudo-labels of clus-
ter assignments of snippets. However, our method dif-
fers significantly from [13] in both purpose and solution.



Specifically, [13] aims to measure the distance between two
sequences by matching the frames of one sequence with
the frames of another sequence with similar temporal posi-
tions. Consequently, it constructs a prior distribution for the
mapping between the frames in different sequences based
on their temporal locations. In contrast, we aim to dis-
ambiguate the assignments between snippets and clusters
by enforcing the snippets with high foreground/background
probabilities to be assigned to the clusters with high fore-
ground/background probabilities. To achieve this, we con-
struct the prior distribution for the cluster assignments of
the snippets based on the distance between the foreground
probabilities of snippets and the foreground probabilities of
clusters. Besides, to better suit our approach, we rank the
snippets according to their foreground probabilities, result-
ing in ranking indices that are more comparable with the
foreground probabilities of the clusters. This approach al-
lows us to better match the snippets to the appropriate clus-
ters, as demonstrated in Appendix C.3.

Furthermore, our method is somewhat related to context-
based methods [10, 8]. Previous context-based meth-
ods [10, 8] typically regard the context as a special type
of background. That is, they divide foreground and back-
ground snippets into three latent groups: action, context,
and normal background. This approach provides a more
detailed description of the background distribution. Our
method extends this approach by dividing snippets into mul-
tiple latent groups, which allows for a more comprehensive
description of both the foreground and background distri-
butions. The visualized results (e.g., 5th row of Fig.6 in the
main paper) reveal that some of the learned clusters are very
close to the concept of context. From this view, our model
already has some contextual modeling capabilities.

F. Implementation Details

F.1. Baseline model

Here we present more details about the multiple in-
stance learning (MIL) used in the baseline. Specifically,
we first calibrate T-CAS PV ∈ RT×G with the attention
weights PA ∈ RT to highlight foreground snippets and
suppress background snippets, resulting in the calibrated T-
CAS (dubbed P̂V ∈ RT×G). It can be implemented in
multiple ways. Here following [9, 10], we fuse the scores
by weighted summation, P̂V = ωPV + (1− ω)PA. ω is
a predefined weight. Thereafter, we select K snippets from
each video for each class based on P̂V :

Γc = arg max
Γ⊂{1,..,T}

|Γ|=K

∑
τ∈Γ

P̂V
τ,c, (1)

where K is a hyper-parameter. Temporal pooling is applied
to the selected snippets in Γc to build video-level class pre-

diction P̄ ∈ RG:

P̄c = Softmax
c

(
1

K

∑
τ∈Γc

PV
τ,c). (2)

Finally, P̄ is used to compute a video classification loss, as
shown in the main paper.

F.2. Co-labeling

In our framework, there are several procedures of
pseudo-labeling that can be summarized with a unified for-
mulation as Q = Ψ(P ). Here P is the prediction of the
model, Ψ is the function of generating pseudo-labels, Q is
the pseudo-labels. To improve the quality of the pseudo-
labels, following [15], we propose to apply the two-stream
co-labeling (TSCL) strategy, which is model-agnostic and
naturally compatible with our method. That is, we ag-
gregate the predictions of RGB and optical-flow streams
to generate the modality-sharing pseudo-labels, i.e., Q =
Ψ(0.5P RGB + 0.5P Flow). To be specific, for QC , we fuse
the cluster assignments of RGB stream (dubbed PC,RGB)
and that of Flow stream (dubbed PC,Flow) by:

PC = 0.5PC,RGB + 0.5PC,Flow. (3)

Then the pseudo-labels QC is generated by:

min
QC∈ΩC

⟨QC ,− logPC⟩. (4)

As for QR, the prediction of cluster classifier of RGB
stream (dubbed PR,RGB) and that of Flow stream (dubbed
PR,Flow) are combined as follows

PR = 0.5PR,RGB + 0.5PR,Flow. (5)

Then the pseudo-labels QR is generated by:

min
QR∈ΩR

⟨QR,− logPR⟩. (6)

Moreover, the top-K selection used in Eq. (1) can be re-
garded as a procedure of defining the F&B snippets. Hence,
we utilize the TSCL to improve the quality of the top-K se-
lection. Specifically, we fuse the calibrated T-CAS of RGB
stream (dubbed P̂V,RGB) and that of optical-flow stream
(dubbed P̂V,Flow) as follows:

P̂V = 0.5P̂V,RGB + 0.5P̂V,Flow. (7)

Then P̂V is used for top-K selection. Notably, the results
of the top-K selection also influences the definition of QA.
we use Eq. (1) to determine the foreground and background
snippets. , which can influence the learning of both the
video classification module and attention module.

In Table 5, we present an evaluation of the effect of the
two-stream co-labeling strategy on both the baseline model



and our clustering-based F&B algorithm. It can be seen
that the TSCL is important to the baseline, boosting its per-
formance from 38.3% to 42.1%. However, the additional
use of the TSCL in our algorithm results in only a small
improvement compared to not using the TSCL in our algo-
rithm (from 45.6% to 46.2%). This suggests that the main
reason for the performance improvement of our algorithm
over the baseline model is our proposed clustering-based
approach, rather than the two-stream co-labeling strategy.

Method mAP
Baseline w/o TSCL 38.3
Baseline w/ TSCL 42.1
Baseline w/ TSCL + Our algorithm w/o TSCL 45.6
Baseline w/ TSCL + Our algorithm w/ TSCL 46.2

Table 5: Ablation study of two-stream co-labeling (TSCL).

F.3. Training details

TVL1 [14] is applied to extract optical-flow stream from
RGB stream in advance. Each stream is divided into 16-
frame snippets. Following convention, we employ the
I3D [3] network pre-trained on Kinetics-400 [3] to extract
snippet-level features from each stream, where the channel
dimension D is 1024. The number of sampled snippets T is
set to 750 for THUMOS14 and 50 for ActivityNet v1.2 and
v1.3. Both streams share the same structure but have sep-
arate parameters. The embedding encoders are comprised
of a temporal convolution layer with 512 channels and a
ReLU layer. The action classifier consists of a FC layer
and a Softmax layer. The clustering head is composed of
a linear cosine classifier [6] with a temperature of 10 and a
Softmax layer. The attention layer consists of a FC layer
and a Sigmoid layer. We set the classes K of the clustering
head to 16 for THUMOS14 and 64 for ActivityNet v1.2 and
v1.3. Following previous methods [10, 9], the k for top-k
selection is set to T//8 in THUMOS14 and T//2 in Activ-
ityNet v1.2 and v1.3, while the batch size B is set to 16, the
γ is set to 0.7 and the ω is set to 0.25 for all datasets. Fol-
lowing [2], the ϵ is set to 20. The temperature ρ is set to 10.
The standard deviation σ is set to 10. The loss weights are
set as λS = 1, λC = 0.3 for all datasets. We utilize Adam
optimizer with a learning rate of 10−4 for all datasets. We
run each experiment three times and report their mean ac-
curacy for reliability. The model implemented by Pytorch
is trained on a Nvidia 1080Ti GPU.

F.4. Testing details

During inference, the video-level scores and snippet-
level scores (i.e., T-CAS) of both the RGB stream and
optical-flow stream are fused by averaging. Then, a thresh-
old is applied to the video-level scores to determine the

action categories. For the selected action class, a thresh-
old strategy is applied to the T-CAS, as done in [10, 5], to
obtain action proposals. Next, the outer-inner-contrastive
technique [11] is used to calculate the class-specific score
for each proposal. To increase the pool of proposals, multi-
ple thresholds are applied, and non-maximum suppression
(NMS) is employed to remove duplicate proposals.

For multi-scale testing, following [7], we first rescale
the input sequences to different scales [1, 1.25, 1.5, 2], and
then feed them into the model to generate action proposals.
These proposals are then combined and subjected to NMS
to obtain the final action detections.

G. Theoretical Derivation
Here we provide the derivation of the solution to the fol-

lowing optimal-transport problem in SCC:

min ⟨QS ,− logPS⟩+ 1

ϵ
KL(QS , Q̂S) s.t.,QS ∈ ΩS

ΩS = {QS ∈ RN×K
+ |QS1K = αS ,QS⊤

1N = βS}.
(8)

For notation simplicity, we remove the superscript S. Then
the problem is rewritten as

min ⟨Q,− logP ⟩+ 1

ϵ
KL(Q||Q̂) s.t.,Q ∈ Ω

Ω = {Q ∈ RN×K
+ |Q1K = α,Q⊤1N = β}.

(9)

To address the problem, we first write the Lagrangian func-
tion of Eq. (9) as follows:

L(Q,µ,ν) =⟨Q,− logP ⟩+ 1

ϵ
KL(Q||Q̂)

+ µ⊤(Q1K −α) + ν⊤(Q⊤1N − β)

=

N∑
n=1

K∑
k=1

(−Qn,k logPn,k +
1

ϵ
Qn,k log

Qn,k

Q̂n,k

+ µnQn,k + νkQn,k)− µ⊤α− ν⊤β
(10)

where µ ∈ RN and ν ∈ RK are the dual variables so that
Q1K = α and Q⊤1N = β. The derivative of L(Q,µ,ν)
w.r.t. Qn,k is:

∂L(Q,µ,ν)

∂Qn,k
= − logPn,k +

1

ϵ
log

Qn,k

Q̂n,k

+
1

ϵ
+ µn + νk.

(11)
Note that the optimal Q exists and is unique, as both the
objective and the constraint in Eq. (9) are convex. Hence, to
obtain the optimal Q, we set ∂L(Q,µ,ν)

∂Qn,k
= 0, and then get:

Qn,k = e−
1
2−ϵµn− 1

2 (Q̂n,kP
ϵ
n,k)e

− 1
2−ϵνk . (12)

Let us denote S = Q̂ · P ϵ. Obviously, all elements of S
are strictly positive. According to [12, 1, 13], there exist di-
agonal matrices diag(u) and diag(v) with strictly positive
diagonal elements so that diag(u)S diag(v) belongs to Ω.



In summary, the optimal Q has the form as:

Q = diag(u)S diag(v) = diag(u)(Q̂ · P ϵ) diag(v),
(13)

where u ∈ RN and v ∈ RK are two renormalization vec-
tors that make the resulting matrix Q to be a probability
matrix. Throughout our work, we follow [2] to implement
the algorithm due to its conciseness. Formally, Eq. (13) is
replaced as follows:

Q = diag(u)(Q̂ · exp(ϵL)) diag(v), (14)

where L indicates the logits before the Softmax layer,
namely P = Softmax(L). Note that Eq. (13) and Eq. (14)
are equivalent in principle. The main difference lies in
the placement of the factor ϵ that sharpens the labels.
In Eq. (13), the factor is applied before Softmax, while
in Eq. (14), it is applied after Softmax. Similarly, for the
cluster classification component (without Q̂), we can obtain
the solution as follows:

Q = diag(u)exp(ϵL) diag(v). (15)

Both Eq. (14) and Eq. (15) can be efficiently computed us-
ing the iterative Sinkhorn-Knopp algorithm [4]. We refer
to [4] for more details. This algorithm is highly efficient on
GPU as it only involves a couple of matrix multiplication,
enabling online computation.
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