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Figure 1: Comparison between single-branch and dual-
branch under different settings. Dual branch design brings
more gain as the number of frames increases.

A. Details of Dual-branch SparseBEV

In this section, we provide detailed explanations and ab-
lations on the dual branch design. As shown in Fig. 2, the
input multi-camera videos are divided into a high-resolution
“slow” stream and a low-resolution “fast” stream. Sampling
points are projected to the two streams respectively and the
sampled features are stacked before adaptive mixing. Ex-
periments are conducted with a V2-99 [1] backbone pre-
trained by FCOS3D [2] on the training set of nuScenes. 1

In Fig. 1, we compare our dual branch design with sin-
gle branch baselines. If we use a single branch of 1600 ×
640 (orange curve) resolution, adding more frames does not
provide as much benefit as it does at 800 × 320 resolution
(green curve). By using dual branch of 1600 × 640 and 640
× 256 resolution with 1:2 ratio, we decouple spatial appear-
ance and temporal motion, unlocking better performance.
As we can see from the blue curve, the longer the frame
sequence, the more gain the dual branch design brings.

In Tab. 1, we provide detailed quanlitative results. Un-
der the setting of 8 frames (∼ 4 seconds), our dual branch

�: Corresponding author.
1Note that the experiment setting used here is different from that in the

main paper, since the experiments are conducted before the submission of
ICCV 2023. After submission, we further improve our implementation to
refesh our results. The conclusion is consistent between these different
implmentations.

Method Setting mAP NDS

Single branch 8f × 1600 48.9 57.3
Dual branch 2f × 1600 + 8f × 640 49.4 57.9
Dual branch 4f × 1600 + 8f × 640 50.2 58.4
Dual branch 4f × 1600 + 8f × 800 50.1 58.0

Table 1: Ablations on the dual branch design. Nf × M in-
dices the number of frames is N and the longer side of the
image has M pixels. For example, “8f × 640” denotes 8
frames with 640× 256 resolution.

Method Feature Maps Train. Cost mAP

Single branch C2, C3, C4, C5 2d 17h 48.9
Single branch C2, C3, C4, C5, C6 2d 18h 49.3
Dual branch C2, C3, C4, C5 1d 19h 50.2

Table 2: Detailed analyses on the dual-branch design. For
single branch baselines, simply adding an extra C6 feature
map has limited effect. In contrast, our dual branch design
can boost the performance significantly.

design with only two high resolution (HR) frames surpasses
the baseline with eight HR frames. By increasing the num-
ber of HR frames to 4, we further improve the performance
by 0.8 mAP and 0.5 NDS. Moreover, increasing the reso-
lution of the LR frames does not bring any improvement,
which clearly demonstrates that appearance detail and tem-
poral motion are decoupled to different branches.

Since the dual-branch design also enlarges the recep-
tive field (smaller resolution provides larger receptive field)
which may improve performance, we further analyse where
the improvement comes from in Tab. 2. The first row is
our baseline which takes 8 frames with a single branch of
1600 × 640 as input. We first try to increase the recep-
tive field by adding an extra C6 feature map (Row 2), and
observe that the performance is slightly improved. This
demonstrates that a larger receptive field is required for
high-resolution and long-term inputs. However, the spatial
appearance and temporal motion is still coupling, limiting
the performance. By using dual branches of 1600 × 640
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Figure 2: Architecture of dual-branch SparseBEV. The input multi-camera videos are divided into a high-resolution “slow”
stream and a low-resolution “fast” stream.

Self Attention Distance Function NDS mAP

SASA-beta τD 55.2 44.8
SASA τD 55.6 45.4

Table 3: Compared with SASA-beta, SASA not only has
the ability of multi-scale feature aggregation, but generates
adaptive receptive field for each query as well.

and 640 × 256 with 1:2 ratio (Row 3), we decouple spatial
appearance and temporal motion, leading to better perfor-
mance. Moreover, the training cost is also reduced by 1/3.
This experiment demonstrates that we not only need larger
receptive fields, but also decouple spatial appearance and
temporal motion.

B. Study on Scale-adaptive Self Attention
In this section, we’ll talk about how we came up with

scale-adaptive self attention (SASA). In the main paper, the
receptive field coefficient τ is specific to each head and
adaptive to each query. In the development of SASA, there
is an intermediate version (dubbed SASA-beta for conve-
nience): the τ for each head is simply a learnable parameter
shared by all queries.

In Fig. 3, we take a closer look at how τ changes with
training. We surprisingly find that regardless of the initial-
ization, each head learns a different τ from the others and all
of them are distributed in range [0, 2], enabling the network
to aggregate local and multi-scale features from multiple
heads.
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Figure 3: The change of τ of each head in SASA-beta
during training. Regardless of the initialization, each head
learns a different τ , enabling local and multi-scale feature
aggregation.

Next, we improve SASA-beta by generating the τ adap-
tively from the query, which corresponds to the version in
the main paper. Compared with SASA-beta, SASA not only
has the ability of multi-scale feature aggregation, but gen-
erates adaptive receptive field for each query as well. The
quanlitative comparison between SASA-beta and SASA is
shown in Tab. 3.

C. More Visualizations

In Fig. 4, we provide more visualizations of the sam-
pling points from different stages. In the initial stage, the
sampling points have the shape of pillars. In later stages,
they are refined to cover objects with different sizes.



(a) Sample 0005, stage 1

(b) Sample 0005, stage 2

(c) Sample 0005, stage 3

(d) Sample 0028, stage 1

(e) Sample 0028, stage 2

(f) Sample 0028, stage 3

Figure 4: Visualized sampling points from different stages. Different instances are distinguished by colors.
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