
Supplementary Material:
Tangent Model Composition for Ensembling and Continual Fine-tuning

A. Implementation Details
We run all our experiments on a ResNet-50 model pre-trained with ImageNet, except in Table. 3 where we use a pre-trained

ResNet-18 model instead for fair comparison with existing benchmarks. To construct the tangent models, we re-initialize the
last fully connected layer such that the number of output classes matches that of the target tasks. We train the original models
with SGD using the cross-entropy loss. Tangent models are trained with the Adam optimizer using the rescaled squared loss
(RSL). We train all (original and tangent) models for 50 epochs using a decaying learning rate factor of 0.1 at epochs 25 and
40, and use a constant batch size of 32 across all experiments. We average each experiment across 3 independent runs.

For all baseline methods, we follow [3, 4, 2] and standardize batch size at 32. The only two exceptions are Co2L [5],
where we set batch size and buffer batch size to 256 since a large batch size is needed to achieve reasonable accuracy,
and TWF [2] where we set both task and buffer batch size to 12 due to its larger memory requirement resulting from the
attention mechanism. For replay-based baselines, at each iteration, in addition to sampling a batch from the current task, we
also sample a batch of the same size (32) from the replay buffer. Note that this immediately increases training time for all
replay-based methods by a factor of two, since the training set size for each task is effectively doubled for fixed number of
epochs.

We prepare our datasets as follows: (a) Caltech-256 [6] contains ∼ 30.6K images across 256 object classes. Following
[1], we sample 60 images per class to train and test on the remaining. (b) MIT-67 [8] contains ∼ 15.6K images across 67
indoor scene categories. We split MIT-67 using the provided train-test splits. (c) OxfordPets [7] contains ∼ 7.3K images
across 37 pet categories. We split the dataset equally for training and testing.

We set λ(t,1) =
1
t and λ(t,2) =

t−1
t , which weights each model by the number of component models used to construct it.

This is a natural choice when tasks are assumed to be distributed uniformly. We note that in cases such as task imbalance, it
is likely that there will be more effective choices for λ. We leave the investigation of this for future work.

B. Extended Literature Review
We describe in detail the three scenarios for continual learning proposed by [9]. In Task-Incremental Learning, task iden-

tity (Task-ID) is provided at inference time. In other words, models can be trained with task-specific components which are
“selected” during inference by the provided Task-ID. For example, in the case of multi-class classification, this corresponds
to simply selecting the output nodes corresponding to the task, and restricting predictions only to this subset. Thus, preserv-
ing intra-task performance is critical for Task-Incremental Learning. In Data/Domain-Incremental Learning, Task-ID is not
provided at inference time. However, knowledge of the task identity is not necessary for inference. [9] cites the example
of protocols under which structure of each task remains consistent, but distribution of inputs differs across tasks. Lastly,
Class-Incremental Learning requires both inferring Task-ID and solving the task at hand. For instance, this happens when
each task contains a new subset of classes/labels that are not present in previously encountered tasks.

C. Additional Discussion
C.1. Fine-tuning classification head

The effectiveness of TMC is partly due to the implicit regularization arising from linearization of a model about the pre-
training objective. In the extreme case, we can choose only to linearize with respect to the last layer of a neural network,
which in our scenario is the classification head. Note that this is often a fully-connected layer which is already linear. As
such, this is equivalent to simply fine-tuning the classification head, which can be composed for inference. We refer to this as



Table 1. Non-linear fine-tuning on the DomainNet dataset.

Test Domain Train Domain Composition

Clipart Quickdraw Photo Infograph Sketch Painting Ens-L Ens-SM Soup

Clipart 75.90±0.10 4.56±1.42 48.06±0.27 38.32±0.26 49.60±0.68 42.57±0.91 60.27±6.84 70.68±0.13 62.18±0.42

Quickdraw 9.45±0.25 69.64±0.08 4.85±0.13 3.35±0.23 10.56±0.16 3.73±0.12 25.11±0.48 36.43±0.47 14.30±0.21

Photo 54.21±0.32 1.68±0.38 83.41±0.08 53.27±0.45 48.93±0.41 60.20±0.49 62.19±11.88 77.51±0.23 69.97±0.36

Infograph 18.47±0.24 0.55±0.17 21.84±0.11 43.25±0.24 15.33±0.16 19.34±0.52 24.05±3.96 33.13±0.26 26.04±0.14

Sketch 41.40±0.77 5.08±0.52 37.00±0.20 29.88±0.36 69.14±0.16 37.25±0.28 54.54±2.86 61.37±0.22 52.88±0.42

Painting 36.83±0.45 0.70±0.11 48.48±0.16 35.70±0.34 36.70±0.52 71.53±0.33 46.14±12.21 63.64±0.54 55.14±0.64

Average 39.38±0.35 13.70±0.45 40.61±0.16 33.96±0.31 38.37±0.35 39.10±0.44 45.39±6.37 57.13±0.31 46.75±0.36

Table 2. Tangent Fine-tuning on the DomainNet dataset.

Test Domain Train Domain Composition

Clipart Quickdraw Photo Infograph Sketch Painting TME TMC

Clipart 64.01±0.15 3.52±0.09 34.15±0.17 24.43±0.23 33.07±0.17 27.70±0.09 50.54±0.17 57.10±0.23

Quickdraw 2.57±0.10 56.70±0.07 1.71±0.06 1.15±0.03 2.97±0.07 1.19±0.07 7.17±0.15 25.54±0.63

Photo 45.68±0.13 2.71±0.02 80.31±0.06 47.08±0.04 41.49±0.10 54.18±0.06 69.34±0.06 74.50±0.05

Infograph 12.94±0.08 0.75±0.04 15.37±0.15 33.66±0.10 10.43±0.08 12.89±0.09 21.52±0.13 23.63±0.15

Sketch 25.24±0.12 3.08±0.06 23.10±0.02 17.41±0.19 54.65±0.13 22.11±0.05 37.43±0.11 44.38±0.09

Painting 26.62±0.05 1.68±0.01 40.74±0.13 27.97±0.12 28.73±0.20 63.26±0.06 48.99±0.09 55.36±0.03

Average 29.51±0.10 11.41±0.05 32.56±0.10 25.29±0.12 28.56±0.12 30.22±0.07 39.17±0.12 46.75±0.20

TMC-FC, and show in Table 3 that this simplest form of linearization can yield even better accuracies than TMC when the
pre-training features are sufficient for the downstream task (in the case of C-Caltech-256), but performs significantly worse
when this assumption does not hold (C-MIT-67 and C-OxfordPets).

Table 3. Fine-tuning classification head: Fine-tuning only the classification head and composing them is the simplest form of TMC (we
refer to this as TMC-FC), where linearization is only done with respect to the last fully-connected classification layer. Here, we show
that TMC-FC is highly effective for C-Caltech-256 using an ImageNet pre-training objective, but TMC works significantly better for C-
MIT-67 and C-OxfordPets since the features learnt from ImageNet pre-training do not generalize as well to indoor scene recognition and
fine-grained object (pet species) classification respectively.

Dataset Tasks Soup Ens-L Ens-SM TMC-FC TMC TME
Inference/Memory Cost: O(1) O(T ) O(T ) O(1) O(1) O(T )

C-Caltech-256
(Class-IL)

5 84.00 82.80 83.09 85.30 84.82 85.53
10 80.10 76.85 79.76 83.43 82.37 82.58
20 74.86 66.76 75.47 79.13 78.66 79.30

C-MIT-67
(Class-IL)

5 59.48 56.79 58.68 61.50 69.43 71.72
10 49.30 42.36 50.52 54.53 64.53 65.72
20 28.51 23.61 35.62 40.05 48.98 54.93

C-OxfordPets
(Class-IL)

5 80.71 81.14 81.86 77.83 84.42 85.04
10 71.35 69.71 77.31 70.93 77.75 79.97

C.2. Failure modes of TMC

As discussed in the main paper, while TMC and TME is often more effective than weight averaging or ensembling of
non-linear models partly due to the implicit regularities provided by model linearization, this can lead to over-regularization
when the downstream task and pre-training objective are highly dissimilar. We demonstrate this using the DomainNet dataset
consisting of 6 different domains - Cliparts, Google Quickdraws, Photos, Infographs, Sketches, and Paintings. We fine-tune,
from an ImageNet pre-training initialization, individual non-linear and tangent models on each domain in Table 1 and Table 2
respectively. We show that in such cases, component models and the composed model trained using non-linear fine-tuning



outperforms tangent fine-tuning, as a result of over-regularization in the tangent model.

C.3. Visualizations of Component Model Accuracies

We provide additional visualizations of the individual component model accuracies for MIT-67, Caltech-256, and Oxford-
Pets in Fig. 1, Fig. 2, and Fig. 3 respectively.
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Figure 1. Accuracies of component and composed models for MIT-67 Dataset
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Figure 2. Accuracies of component and composed models for Caltech-256 Dataset

C.4. Further Discussion on the Rescaled Square Loss

Here, we elaborate on the effectiveness of RSL when tasks are highly dissimilar (class-incremental learning). First, note
that due to random initialization, component models trained on tasks τ ̸= t will produce non-zero noisy output signals for
labels contained within task t upon composition. While these noisy signals are too small to harm or bias the predictions of



Tas
k 1
Tas

k 2
Tas

k 3
Tas

k 4
Tas

k 5
Tas

k 6
Tas

k 7
Tas

k 8
Tas

k 9

Tas
k 1

0

Log
it E

ns.

So
ftm

ax
 En

s.

Weig
ht 

Av
g.

10

20

30

40

50

60

70

80
Ac

cu
ra

cy
 / 

%
C-OxfordPets (Class-IL)
Component Models (Non-linear)
Logit Ensemble (Non-linear)
Softmax Ensemble (Non-linear)
Model Soup
Component Models (Tangent)
Logit Ensemble (Tangent)
Tangent Model Ensembling (TME)
Tangent Model Composition (TMC)

Tas
k 1
Tas

k 2
Tas

k 3
Tas

k 4
Tas

k 5
Tas

k 6
Tas

k 7
Tas

k 8
Tas

k 9

Tas
k 1

0

Log
it E

ns.

So
ftm

ax
 En

s.

Weig
ht 

Av
g.

84

86

88

90

92

Ac
cu

ra
cy

 / 
%

D-OxfordPets (Data-IL)

Figure 3. Accuracies of component and composed models for OxfordPets Dataset

individual component models, the summation of the noise from each component model upon ensembling/composition can
significantly affect the final prediction.

The effectiveness of soft-max ensembling demonstrated in the main paper can be attributed to the fact that the soft-max
operation greatly increases the signal-to-noise ratio for each individual component model. This minimizes the sum of the
noise components relative to the constructive signals present in the final composed model. Training using RSL with large
values of β aims to mimic this effect by encouraging greater separation between the positive and negative outputs, and thus
increasing the signal-to-noise ratio of each component model.

We show the effects of β on the output distribution of the composed model in Fig. 4. Lower values of β reduces the
signal-to-noise ratio, causing noisy signals to become more prominent in the final composed model. On the other hand,
larger values of β increases the distinction between the positive and negative signals in the final composed model.

On the other hand, in the case when tasks are similar, values of β can result in ignoring weak but constructive signals from
different component models.
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Figure 4. We plot the output logit distribution pertaining to the ground-truth class [TMC (Target)] and another class [TMC (Other].
Output values for the former should ideally be large, while output values for the latter should ideally be close to zero. We see that for small
β = 1, there is significant overlap between the two distributions, reducing the contrast between positive and negative output signals. On
the other hand, larger values of β produces significantly less overlap between the two distributions. Plots are done on C-MIT-67, 10 tasks.
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